解析人:李勇,特级教师,成都树德中学数学教研组长
今年高考数学的“考试大纲”稍有调整,提高了对向量的运用要求,对三角函数的要求提高了一个层次,比如,将过去要求的“了解正弦函数、余弦函数、正切函数的图像和性质”改为了“理解正弦函数、余弦函数、正切函数的图像和性质”;理科增加了“了解参数方程的概念”,文科增加了“理解圆的参数方程”。
复习建议:
A、重视向量、函数,加强训练
2006年大纲将向量放在“第一”的位置,考生应高度重视。可着重训练平面向量关系式表征平面几何图形,即对向量的“形”的认识,可参照2005年全国高考卷二第8题、卷一第15题;将平面几何图形特征翻译为向量关系式,即对向量的“数”的认识,如2005年天津卷14题;在直线与圆锥曲线综合问题,向量融合在其中,如2005年天津卷21题、 福建卷21题、湖南卷19题、全国卷一21题等。
2006年大纲将“正弦函数、余弦函数、正切函数的图像和性质”由“了解”提高到“理解”,考生在复习中应相应作出调整,要比较熟练地画出三角函数图像,理解诸性质如对称中心、对称轴、周期、单调、最值(极值)的相依关系;在大题中,要注意“化简三角函数式,再研究性质和图像”类题目。
同时,函数的连续也由“了解”上升为“理解”,这就要求考生在给出解析式的情况下,要判定函数的连续性,反之亦然。
B、“了解”不必盲目拔高
参数方程对理科学生而言,仅是“了解”层次,只需基本会用,不必盲目拔高;文科生要求“理解圆的参数方程”,要注意以下3点:会将圆的参数方程变成普通方程;会选择参数,将圆的普通方程变成参数方程;明白圆的参数方程中参数(角)的意义,并能由此展开相关的几何分析。
今年高考大纲数学理科将“闭区间上连续函数有最大值和最小值”由“理解”降低为“了解”,考生会用就行,不必追问“为什么”,它的证明不可能在中学完成,而是属于高等数学范畴,考生不必浪费时间。