一、命题指导思想
1.普通高等学校招生全国统一考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试.
2.命题注重考查考生的数学基础知识、基本技能和数学思想方法、数学本质理解水平,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求.
3.命题注重试题的创新性、多样性和选择性,具有一定的探究性和开放性,既要考查考生的共同基础,又要满足不同考生的选择需求,合理分配必考、选考内容的比例,对选考内容的命题应做到各选考专题试题分值相等,力求难度均衡.
4.试卷应个有较高的信度、效度和必要的区分度以及适当的难度.
二、考试方式与试卷结构
1.考试方式
考试采用闭卷、笔试形式,全卷满分为150分,考试时间为120分钟.
2.试卷结构
全卷分为第I卷和第Ⅱ卷两部分.
第I卷为12个选择题,全部为必考内容:第Ⅱ卷为非选择题,分为必考和选考两部分.必考部分题由4个填空题和5个解答题组成;选考部分由选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”各命制1个解答题,考生从2题中任选1题作答,若多做,则按所做的第一题给分.
1.试题类型
试题分为选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程,三种题型分数的百分比约为;选择题40%左右,填空题10%左右,解答题50%左右.
2.难度控制
试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题界定为难题,三种试题应控制合适的分值比例,试卷总体难度适中.
三、考核目标与要求
1.知识要求
知识是指《普通高中数学课程标准(实验)》所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.
对知识的要求由低到高分为三个层次,依次是知道(了解、模仿)、理解(独立操作)、掌握(运用、迁移),且高一级的层次要求包括低一级的层次要求.
①知道(了解、模仿);要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.
这一层次所涉及的主要行为动词有:了解、知道、识别、模仿、会求、会解等.
②理解(独立操作):要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判断、讨论,具备利用所学知识解决简单问题的能力.
这一层次所涉及的主要行为动词有:描述,说明,表达、表示、推测、想象,比较、判别、判断,初步、应用等.
③掌握(运用、迁移):要求能够对所列知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论并且加以解决.
这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.
2.能力要求
能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力、能及应用意识和创新意识.
(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等乎段形象地提示问题的本质.
(2)抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本持;从给定的大量信息材料中,概括出一些结论,并能将其用于解决问题或作出新的判断.
(3)推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法,一般运用合情推理进行猜想,再运用演绎推理进行证明.
(4)运算求解能力:会根据法则、公式进行正确运算、变形和处理数据;能根据问题的条件寻找与设计合理、简捷的运算途径:能根据要求对数据进行估计和近似计算.
(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.
(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题:能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进行而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.
(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也越强.
3.个性品质要求
个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学理性精神,形成审慎的思维习惯,体会数学的美学意义.
要求考生克服紧张情绪.以平和的心态参加考试,合理支配考试时间,以实事求事的科学态度解答试题.