首页 - 网校 - 面授 - 团购 - 书城 - 视线 - 模拟考场 - 考友录 - 论坛 - 导航 -
首页考试吧论坛Exam8视线考试商城网络课程模拟考试考友录实用文档求职招聘论文下载
2013中考
法律硕士
2013高考
MBA考试
2013考研
MPA考试
在职研
中科院
考研培训 自学考试 成人高考
四 六 级
GRE考试
攻硕英语
零起点日语
职称英语
口译笔译
申硕英语
零起点韩语
商务英语
日语等级
GMAT考试
公共英语
职称日语
新概念英语
专四专八
博思考试
零起点英语
托福考试
托业考试
零起点法语
雅思考试
成人英语三级
零起点德语
等级考试
华为认证
水平考试
Java认证
职称计算机 微软认证 思科认证 Oracle认证 Linux认证
公 务 员
导游考试
物 流 师
出版资格
单 证 员
报 关 员
外 销 员
价格鉴证
网络编辑
驾 驶 员
报检员
法律顾问
管理咨询
企业培训
社会工作者
银行从业
教师资格
营养师
保险从业
普 通 话
证券从业
跟 单 员
秘书资格
电子商务
期货考试
国际商务
心理咨询
营 销 师
司法考试
国际货运代理人
人力资源管理师
广告师职业水平
卫生资格 执业医师 执业药师 执业护士
会计从业资格
基金从业资格
统计从业资格
经济师
精算师
统计师
会计职称
法律顾问
ACCA考试
注册会计师
资产评估师
审计师考试
高级会计师
注册税务师
国际内审师
理财规划师
美国注册会计师
一级建造师
安全工程师
设备监理师
公路监理师
公路造价师
二级建造师
招标师考试
物业管理师
电气工程师
建筑师考试
造价工程师
注册测绘师
质量工程师
岩土工程师
造价员考试
注册计量师
环保工程师
化工工程师
咨询工程师
结构工程师
城市规划师
材料员考试
监理工程师
房地产估价
土地估价师
安全评价师
房地产经纪人
投资项目管理师
环境影响评价师
土地登记代理人
宝宝起名
缤纷校园
实用文档 英语学习 作文大全 求职招聘 论文下载 访谈|游戏
自主命题地区:北京 | 上海 | 广东 | 山东 | 江苏 | 浙江 | 湖北 | 四川 | 天津 | 陕西 | 湖南 | 福建 | 重庆 | 安徽 | 辽宁 | 江西 | 海南 | 宁夏
统一命题地区:吉林 | 山西 | 广西 | 云南 | 新疆 | 青海 | 甘肃 | 西藏 | 河北 | 贵州 | 河南 | 黑龙江 | 内蒙古单独报考:香港 | 澳门 | 台湾
您现在的位置: 考试吧 > 2013高考 > 高考数学 > 高考数学辅导 > 正文

高中数学对称问题分类探析

高中数学对称问题分类探析,对称问题是高中数学的重要内容之一,在高考数学试题中常出现一些构思新颖解法灵活的对称问题,为使对称问题的知识系统化,本文特作以下归纳……

  对称问题是高中数学的重要内容之一,在高考数学试题中常出现一些构思新颖解法灵活的对称问题,为使对称问题的知识系统化,本文特作以下归纳。

  一、点关于已知点或已知直线对称点问题

  1、设点P(x,y)关于点(a,b)对称点为P′(x′,y′),

  x′=2a-x

  由中点坐标公式可得:y′=2b-y

  2、点P(x,y)关于直线L:Ax+By+C=O的对称点为

  x′=x-(Ax+By+C)

  P′(x′,y′)则

  y′=y-(AX+BY+C)

  事实上:∵PP′⊥L及PP′的中点在直线L上,可得:Ax′+By′=-Ax-By-2C

  解此方程组可得结论。

  (-)=-1(B≠0)

  特别地,点P(x,y)关于

  1、x轴和y轴的对称点分别为(x,-y)和(-x,y)

  2、直线x=a和y=a的对标点分别为(2a-x,y)和(x,2a-y)

  3、直线y=x和y=-x的对称点分别为(y,x)和(-y,-x)

  例1光线从A(3,4)发出后经过直线x-2y=0反射,再经过y轴反射,反射光线经过点B(1,5),求射入y轴后的反射线所在的直线方程。

  解:如图,由公式可求得A关于直线x-2y=0的对称点

  A′(5,0),B关于y轴对称点B′为(-1,5),直线A′B′的方程为5x+6y-25=0

  `C(0,)

  `直线BC的方程为:5x-6y+25=0

  二、曲线关于已知点或已知直线的对称曲线问题

  求已知曲线F(x,y)=0关于已知点或已知直线的对称曲线方程时,只须将曲线F(x,y)=O上任意一点(x,y)关于已知点或已知直线的对称点的坐标替换方程F(x,y)=0中相应的作称即得,由此我们得出以下结论。

  1、曲线F(x,y)=0关于点(a,b)的对称曲线的方程是F(2a-x,2b-y)=0

  2、曲线F(x,y)=0关于直线Ax+By+C=0对称的曲线方程是F(x-(Ax+By+C),y-(Ax+By+C))=0

  特别地,曲线F(x,y)=0关于

  (1)x轴和y轴对称的曲线方程分别是F(x,-y)和F(-x,y)=0

  (2)关于直线x=a和y=a对称的曲线方程分别是F(2a-x,y)=0和F(x,2a-y)=0

  (3)关于直线y=x和y=-x对称的曲线方程分别是F(y,x)=0和F(-y,-x)=0

  除此以外还有以下两个结论:对函数y=f(x)的图象而言,去掉y轴左边图象,保留y轴右边的图象,并作关于y轴的对称图象得到y=f(|x|)的图象;保留x轴上方图象,将x轴下方图象翻折上去得到y=|f(x)|的图象。

  例2(全国高考试题)设曲线C的方程是y=x3-x。将C沿x轴y轴正向分别平行移动t,s单位长度后得曲线C1:

  1)写出曲线C1的方程

  2)证明曲线C与C1关于点A(,)对称。

  (1)解知C1的方程为y=(x-t)3-(x-t)+s

  (2)证明在曲线C上任取一点B(a,b),设B1(a1,b1)是B关于A的对称点,由a=t-a1,b=s-b1,代入C的方程得:

  s-b1=(t-a1)3-(t-a1)

  `b1=(a1-t)3-(a1-t)+s

  `B1(a1,b1)满足C1的方程

  `B1在曲线C1上,反之易证在曲线C1上的点关于点A的对称点在曲线C上

  `曲线C和C1关于a对称

  我们用前面的结论来证:点P(x,y)关于A的对称点为P1(t-x,s-y),为了求得C关于A的对称曲线我们将其坐标代入C的方程,得:s-y=(t-x)3-(t-x)

  `y=(x-t)3-(x-t)+s

  此即为C1的方程,`C关于A的对称曲线即为C1。

  三、曲线本身的对称问题

  曲线F(x,y)=0为(中心或轴)对称曲线的充要条件是曲线F(x,y)=0上任意一点P(x,y)(关于对称中心或对称轴)的对称点的坐标替换曲线方程中相应的坐标后方程不变。

  例如抛物线y2=-8x上任一点p(x,y)与x轴即y=0的对称点p′(x,-y),其坐标也满足方程y2=-8x,`y2=-8x关于x轴对称。

  例3方程xy2-x2y=2x所表示的曲线:

  A、关于y轴对称B、关于直线x+y=0对称

  C、关于原点对称D、关于直线x-y=0对称

  解:在方程中以-x换x,同时以-y换y得

  (-x)(-y)2-(-x)2(-y)=-2x,即xy2-x2y=2x方程不变

  `曲线关于原点对称。

  函数图象本身关于直线和点的对称问题我们有如下几个重要结论:

  1、函数f(x)定义线为R,a为常数,若对任意x∈R,均有f(a+x)=f(a-x),则y=f(x)的图象关于x=a对称。

  这是因为a+x和a-x这两点分别列于a的左右两边并关于a对称,且其函数值相等,说明这两点关于直线x=a对称,由x的任意性可得结论。

  例如对于f(x)若t∈R均有f(2+t)=f(2-t)则f(x)图象关于x=2对称。若将条件改为f(1+t)=f(3-t)或f(t)=f(4-t)结论又如何呢?第一式中令t=1+m则得f(2+m)=f(2-m);第二式中令t=2+m,也得f(2+m)=f(2-m),所以仍有同样结论即关于x=2对称,由此我们得出以下的更一般的结论:

  2、函数f(x)定义域为R,a、b为常数,若对任意x∈R均有f(a+x)=f(b-x),则其图象关于直线x=对称。

  我们再来探讨以下问题:若将条件改为f(2+t)=-f(2-t)结论又如何呢?试想如果2改成0的话得f(t)=-f(t)这是奇函数,图象关于(0,0)成中心对称,现在是f(2+t)=-f(2-t)造成了平移,由此我们猜想,图象关于M(2,0)成中心对称。如图,取点A(2+t,f(2+t))其关于M(2,0)的对称点为A′(2-x,-f(2+x))

  ∵-f(2+X)=f(2-x)`A′的坐标为(2-x,f(2-x))显然在图象上

  `图象关于M(2,0)成中心对称。

  若将条件改为f(x)=-f(4-x)结论一样,推广至一般可得以下重要结论:

  3、f(X)定义域为R,a、b为常数,若对任意x∈R均有f(a+x)=-f(b-x),则其图象关于点M(,0)成中心对称。

  作者简介

  潭玉石:2001—2006年在湖南省一重点中学任校长,2006年至今任中山市杨仙逸中学校长。中学数学特级教师,广东省普通中学教学水平评估专家。

   编辑推荐:

  各地2011高考满分作文汇总

  2011高考试题答案及解析专题

  视频:权威名师团点评2011高考真题答案

文章责编:fengjun07 
看了本文的网友还看了
文章搜索
中国最优秀高考名师都在这里!
扈之霖老师
在线名师:扈之霖老师
   新东方在线特聘教学专家,北京重点中学特级教师,全国著名物理教...[详细]
高考栏目导航
版权声明:如果2013高考网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本2013高考网内容,请注明出处。