(1)具有创立学科功能的方法。如公理化方法、模型化方法、结构化方法,以及集合论方法、极限方法、坐标方法、向量方法等。在具体的解题中,具有统帅全局的作用。
(2)体现一般思维规律的方法。如观察、试验、比较、分类、猜想、类比、联想、归纳、演绎、分析、综合等。在具体的解题中,有通性通法、适应面广的特征,常用于思路的发现与探求。
(3)具体进行论证演算的方法。这又可以依其适应面分为两个层次:第一层次是适应面较宽的求解方法,如消元法、换元法、降次法、待定系数法、反证法、同一法、数学归纳法(即递推法)、坐标法、三角法、数形结合法、构造法、配方法等等;第二层次是适应面较窄的求解技巧,如因式分解法以及因式分解里的“裂项法”、函数作图的“描点法”、以及三角函数作图的“五点法”、几何证明里的“截长补短法”、“补形法”、数列求和里的“裂项相消法”等。
数学是关于数与形的科学,数与形的有机结合是数学解题的基本思想。数学是关于模式的科学,这反映了在数学解题时,需要进行“模式识别”,需要构建标准的模型。往往遇到的问题是标准模型里的参数是需要待定的,这说明待定系数法属于解题的通性通法。数学是一种符号,引入符号可以将自然语言转换为符号语言,通过中间量的代换,就能将复杂问题简单化。数学解题就是一系列连续的化归与转化,将复杂问题简单化、陌生问题熟悉化,其消元、减少参变元的个数是常用的方法。在代数式的变形中,则往往要分离出非负的量,配方技术是经常使用且很奏效的方法。
数形转换、待定系数、变量代换、消元、配方法等是中学数学解题的通性通法。把几何的直观推理、代数的有序推理、解题的通性通法与具体的案例结合起来,整体把握数学解题的通性通法,抓住通性通法的本质,科学有效地实施解题分析、解题思维链的形成、解题后的反思与优化,从而通过有限问题的训练来获得解答无限问题的解题智慧。
关注"566高考"官方微信,第一时间获取2015备考信息!
相关推荐:
·2021高考数学全国乙卷整体点评 (2021-6-10 9:42:40)
·2021年高考数学试卷难度大吗? (2021-6-9 17:37:53)
·2021年高考数学试题有这3个特点 速看! (2021-6-9 9:31:53)
·2021年高考数学试题评析(新高考全国卷I) (2021-6-8 19:52:03)
·命题专家评析2021年高考数学全国卷试题 (2021-6-8 17:43:53)
·免费真题 ·模考试题
2022年上海高考作文题目已公布
2022年湖南高考地理答案已公布
2022年湖南高考生物答案已公布
2022年广东高考地理试题答案已公布
2022年湖南高考生物真题已公布
2022年广东高考真题及答案汇总
2022年浙江高考真题及答案汇总
2022年广东高考生物真题及答案已公布(完整版)
2022年浙江高考政治真题及答案已公布(完整版)
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |