题型一 古典概型问题
例1 某班级的某一小组有6位学生,其中4位男生,2位女生,现从中选取2位学生参加班级志愿者小组,求下列事件的概率:
(1)选取的2位学生都是男生;
(2)选取的2位学生一位是男生,另一位是女生.
破题切入点 先求出任取2位学生的基本事件的总数,然后分别求出所求的两个事件含有的基本事件数,再利用古典概型概率公式求解.
解 (1)设4位男生的编号分别为1,2,3,4,2位女生的编号分别为5,6.从6位学生中任取2位学生的所有可能结果为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.
从6位学生中任取2位学生,所取的2位全是男生的方法数,即从4位男生中任取2个的方法数,共有6种,即(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).
所以选取的2位学生全是男生的概率为P1==.
(2)从6位学生中任取2位,其中一位是男生,而另一位是女生,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种.
所以选取的2位学生一位是男生,另一位是女生的概率为P2=.
题型二 几何概型问题
例2 (2013·四川改编)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是________.
破题切入点 由几何概型的特点,利用数形结合即可求解.
答案
解析
设在通电后的4秒钟内,甲串彩灯、乙串彩灯第一次亮的时刻为x、y,x、y相互独立,由题意可知,如图所示.∴两串彩灯第一次亮的时间相差不超过2秒的概率为P(|x-y|≤2)=
===.
题型三 古典概型与几何概型的综合问题
例3 已知关于x的一元二次方程9x2+6ax-b2+4=0,a,b∈R.
(1)若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求已知方程有两个不相等实根的概率;
(2)若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任取的一个数,求已知方程有实数根的概率.
破题切入点 本题中含有两个参数,显然要将问题转化为含参数的一元二次方程有解的条件问题.
第(1)问利用列举法将基本事件罗列出来,再结合题意求解.
第(2)问将a,b满足的不等式转化为可行域——平面区域问题,从而利用几何概型的概率公式求解.
解 设事件A为“方程9x2+6ax-b2+4=0有两个不相等的实数根”;事件B为“方程9x2+6ax-b2+4=0有实数根”.
(1)由题意,知基本事件共9个,即(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a的取值,第二个数表示b的取值.
由Δ=36a2-36(-b2+4)=36a2+36b2-36×4>0,得a2+b2>4.
事件A要求a,b满足条件a2+b2>4,可知包含6个基本事件:(1,2),(2,1),(2,2),(3,0),(3,1),
所以方程有两个不相同实根的概率P(A)==.
(2)由题意,方程有实根的区域为图中阴影部分,
故所求概率为:
P(B)==1-.
总结提高 (1)求解古典概型问题的三个步骤
①判断本次试验的结果是否是等可能的,设出所求事件A.
②分别计算基本事件的总数n和所求事件A所包含的基本事件的个数m.
③利用古典概型的概率公式P(A)=求出事件A的概率.若直接求解比较困难,则可以利用间接的方法,如逆向思维,先求其对立事件的概率,进而再求所求事件的概率.
(2)几何概型并不限于向平面(或直线、空间)投点的试验,如果一个随机试验有无限多个等可能的基本结果,每个基本结果可以用平面(或直线、空间)中的一点来表示,而所有基本结果对应于一个区域Ω,这时,与试验有关的问题即可利用几何概型来解决.
(3)几何概型的概率求解,一般要将问题转化为长度、面积或体积等几何问题.在转化中,面积问题的求解常常用到线性规划知识,也就是用二元一次不等式(或其他简单不等式)组表示区域.几何概型的试验中事件A的概率P(A)只与其所表示的区域的几何度量(长度、面积或体积)有关,而与区域的位置和形状无关.
1.从标有1,2,3,…,7的7个小球中取出一球,记下它上面的数字,放回后再取出一球,记下它上面的数字,然后把两数相加得和,则取得的两球上的数字之和大于11或者能被4整除的概率是________.
答案
2.已知实数a,b满足x1,x2是关于x的方程x2-2x+b-a+3=0的两个实根,则不等式00,f(1)<0,即建立平面直角坐标系如图.
满足题意的区域为图中阴影部分,故所求概率P==.
3.(2014·陕西改编)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________.
答案
解析 取两个点的所有情况为10种,所有距离不小于正方形边长的情况有6种,概率为=.
4.有一底面半径为1,高为2的圆柱,点O为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P,则点P到点O的距离大于1的概率为________.
答案
解析 设点P到点O的距离小于等于1的概率为P1,由几何概型,则P1===,故点P到点O的距离大于1的概率P=1-=.
5.在面积为S的矩形ABCD内随机取一点P,则△PBC的面积小于的概率是________.
答案
解析
如图,M,N分别为AB,CD中点,
当点P位于阴影部分时,
△PBC的面积小于,根据几何概型,其概率为P==.
6.已知点A在坐标原点,点B在直线y=1上,点C(3,4),若AB≤,则△ABC的面积大于5的概率是________.
答案
解析 设B(x,1),根据题意知点D(,1),
若△ABC的面积小于或等于5,则×DB×4≤5,即DB≤,
所以点B的横坐标x∈[-,],而AB≤,
所以点B的横坐标x∈[-3,3],所以△ABC的面积小于或等于5的概率为
P==,
所以△ABC的面积大于5的概率是1-P=.
7.(2013·湖北)在区间[-2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m=________.
答案 3
解析 由|x|≤m,得-m≤x≤m.
当m≤2时,由题意得=,解得m=2.5,矛盾,舍去.
当2n.
如图,由题意知,在矩形ABCD内任取一点Q(m,n),点Q落在阴影部分的概率即为所求的概率,易知直线m=n恰好将矩形平分,
∴所求的概率为P=.
9.(2013·江苏)现有某类病毒记作XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为______.
答案
解析 P==.
10.平面内有一组平行线,且相邻平行线间的距离为3 cm,把一枚半径为1 cm的硬币任意投掷在这个平面内,则硬币不与任何一条平行线相碰的概率是________.
答案
解析 如图所示,当硬币中心落在阴影区域时,硬币不与任何一条平行线相碰,故所求概率为.
11.已知向量a=(-2,1),b=(x,y).
(1)若x、y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b=-1的概率;
(2)若x,y在连续区间[1,6]上取值,求满足a·b<0的概率.
解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36(个);
由a·b=-1有-2x+y=-1,
所以满足a·b=-1的基本事件为(1,1),(2,3),(3,5),共3个;
故满足a·b=-1的概率为=.
(2)若x,y在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x,y)|1≤x≤6,1≤y≤6};
满足a·b<0的基本事件的结果为
A={(x,y)|1≤x≤6,1≤y≤6且-2x+y<0};
画出图形如图,
矩形的面积为S矩形=25,
阴影部分的面积为S阴影=25-×2×4=21,
故满足a·b<0的概率为.
12.某同学参加省学业水平测试,物理、化学、生物成绩获得等级A和获得等级不是A的机会相等,且三个学科成绩获得等级A的事件分别记为W1,W2,W3,获得等级不是A的事件分别记为,,.
(1)试列举该同学在这次水平测试中物理、化学、生物成绩是否为A的所有可能结果(如三科成绩均为A记为(W1,W2,W3));
(2)求该同学参加这次水平测试获得两个A的概率;
(3)试设计一个关于该同学参加这次水平测试物理、化学、生物成绩情况的事件,使该事件的概率大于85%,并说明理由.
解 (1)该同学在这次水平测试中物理、化学、生物成绩是否为A的可能结果有8种,分别为(W1,W2,W3),(,W2,W3),(W1,,W3),(W1,W2,),(,,W3),(,W2,),(W1,,),(,,).
(2)由(1),知有两个A的情况为(,W2,W3),(W1,,W3),(W1,W2,),共3种,从而所求概率为P=.
(3)方法一 该同学参加这次水平测试物理、化学、生物成绩不全为A的事件概率大于85%.
理由如下:该同学参加这次水平测试物理、化学、生物成绩不全为A的事件有如下7种情况:(,W2,W3),(W1,,W3),(W1,W2,),(,,W3),(,W2,),(W1,,),(,,,),
故物理、化学、生物成绩不全为A的概率是P1==0.875>85%.
方法二 该同学参加这次水平测试物理、化学、生物成绩至少一个为A的事件概率大于85%.
理由如下:该同学参加这次水平测试物理、化学、生物成绩全不为A的事件有1种情况,即(,,),其概率为,则物理、化学、生物成绩至少一个为A的概率为P2=1-=>85%.
关注"566高考"官方微信,第一时间获取2015录取信息!
编辑推荐:
·2020年高考英语抢分题型专练及答案(5) (2020-3-22 15:31:57)
·2020年高考英语抢分题型专练及答案(4) (2020-3-22 15:31:24)
·2020年高考英语抢分题型专练及答案(3) (2020-3-22 15:26:01)
·2020年高考英语抢分题型专练及答案(2) (2020-3-22 15:23:38)
·2020年高考英语抢分题型专练及答案(1) (2020-3-22 15:22:32)
·免费真题 ·模考试题
2022年上海高考作文题目已公布
2022年湖南高考地理答案已公布
2022年湖南高考生物答案已公布
2022年广东高考地理试题答案已公布
2022年湖南高考生物真题已公布
2022年广东高考真题及答案汇总
2022年浙江高考真题及答案汇总
2022年广东高考生物真题及答案已公布(完整版)
2022年浙江高考政治真题及答案已公布(完整版)
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |