自主命题
统一命题
单独报考
您现在的位置: 考试吧 > 2021高考 > 高考数学 > 高考数学模拟试题 > 正文

2017年高考数学提分专项练习及答案(2)

来源:考试吧 2016-8-18 14:22:15 要考试,上考试吧! 万题库
2017年高考数学提分专项练习及答案,更多2017高考报名时间、2017高考模拟试题、2017高考辅导资料、2017高考经验技巧等信息,请及时关注考试吧高考网或关注“566高考”微信获取相关信息。

  三、解答题

  11.

  如图,四边形ABCD与A′ABB′都是正方形,点E是A′A的中点,A′A平面ABCD.

  (1)求证:A′C平面BDE;

  (2)求证:平面A′AC平面BDE.

  解题探究:第一问通过三角形的中位线证明出线线平行,从而证明出线面平行;第二问由A′A与平面ABCD垂直得到线线垂直,再由线线垂直证明出BD与平面A′AC垂直,从而得到平面与平面垂直.

  解析:(1)设AC交BD于M,连接ME.

  四边形ABCD是正方形,

  M为AC的中点.

  又 E为A′A的中点,

  ME为A′AC的中位线,

  ME∥A′C.

  又 ME⊂平面BDE,

  A′C⊄平面BDE,

  A′C∥平面BDE.

  (2)∵ 四边形ABCD为正方形, BD⊥AC.

  ∵ A′A⊥平面ABCD,BD平面ABCD,

  A′A⊥BD.

  又AC∩A′A=A, BD⊥平面A′AC.

  BD⊂平面BDE,

  平面A′AC平面BDE.

  12.

  如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,ADDC,ABDC.

  (1)求证:D1CAC1;

  (2)设E是DC上一点,试确定E的位置,使D1E平面A1BD,并说明理由.

  命题立意:本题主要考查空间几何体中的平行与垂直的判定,考查考生的空间想象能力和推理论证能力.通过已知条件中的线线垂直关系和线面垂直的判定证明线面垂直,从而证明线线的垂直关系.并通过线段的长度关系,借助题目中线段的中点和三角形的中位线寻找出线线平行,证明出线面的平行关系.解决本题的关键是学会作图、转化、构造.

  解析:(1)在直四棱柱ABCD-A1B1C1D1中,连接C1D, DC=DD1,

  四边形DCC1D1是正方形,

  DC1⊥D1C.

  又ADDC,ADDD1,DC∩DD1=D,

  AD⊥平面DCC1D1,

  又D1C平面DCC1D1,

  AD⊥D1C.

  ∵ AD⊂平面ADC1,DC1平面ADC1,

  且AD∩DC1=D,

  D1C⊥平面ADC1,

  又AC1平面ADC1,

  D1C⊥AC1.

  (1)题图

  (2)题图

  (2)连接AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连接MN.

  平面AD1E∩平面A1BD=MN,

  要使D1E平面A1BD,

  可使MND1E,又M是AD1的中点,

  则N是AE的中点.

  又易知ABN≌△EDN,

  AB=DE.

  即E是DC的中点.

  综上所述,当E是DC的中点时,可使D1E平面A1BD.

  13.

  已知直三棱柱ABC-A′B′C′满足BAC=90°,AB=AC=AA′=2,点M,N分别为A′B和B′C′的中点.

  (1)证明:MN平面A′ACC′;

  (2)求三棱锥C-MNB的体积.

  命题立意:本题主要考查空间线面位置关系、三棱锥的体积等基础知识.意在考查考生的空间想象能力、推理论证能力和运算求解能力.

  解析:(1)证明:如图,连接AB′,AC′,

  四边形ABB′A′为矩形,M为A′B的中点,

  AB′与A′B交于点M,且M为AB′的中点,又点N为B′C′的中点.

  MN∥AC′.

  又MN平面A′ACC′且AC′平面A′ACC′,

  MN∥平面A′ACC′.

  (2)由图可知VC-MNB=VM-BCN,

  BAC=90°, BC==2,

  又三棱柱ABC-A′B′C′为直三棱柱,且AA′=4,

  S△BCN=×2×4=4.

  A′B′=A′C′=2,BAC=90°,点N为B′C′的中点,

  A′N⊥B′C′,A′N=.

  又BB′⊥平面A′B′C′,

  A′N⊥BB′,

  A′N⊥平面BCN.

  又M为A′B的中点,

  M到平面BCN的距离为,

  VC-MNB=VM-BCN=×4×=.

  14.

  如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,ABDC,PAD是等边三角形,BD=2AD=8,AB=2DC=4.

  (1)设M是PC上的一点,证明:平面MBD平面PAD;

  (2)求四棱锥P-ABCD的体积.

  命题立意:本题主要考查线面垂直的判定定理、面面垂直的判定定理与性质定理以及棱锥的体积的计算等,意在考查考生的逻辑推理能力与计算能力,考查化归与转化思想.

  解析:(1)证明:在ABD中,因为AD=4,BD=8,AB=4,所以AD2+BD2=AB2.

  故ADBD.

  又平面PAD平面ABCD,平面PAD∩平面ABCD=AD,BD平面ABCD,

  所以BD平面PAD,

  又BD平面MBD,

  所以平面MBD平面PAD.

  (2)过点P作OPAD交AD于点O,

  因为平面PAD平面ABCD,

  所以PO平面ABCD.

  因此PO为四棱锥P-ABCD的高.

  又PAD是边长为4的等边三角形,

  所以PO=×4=2.

  在四边形ABCD中,ABDC,AB=2DC,

  所以四边形ABCD是梯形.

  在Rt△ADB中,斜边AB上的高为=,此即为梯形ABCD的高.

  所以四边形ABCD的面积S=×=24.

  故四棱锥P-ABCD的体积VP-ABCD=×24×2=16.

关注"566高考"官方微信,第一时间获取2016高考成绩、分数线!

上一页  1 2 

  相关推荐:

  各地2017年高考报名时间及方式汇总 | 关注微信获取报名时间

  新课标2017高考英语语法填空解题指导及备考策略

  2017高考生必读:50句话总结高考化学知识点

  2017高考英语提分策略:吃透课本是关键!

  小编分享:2017年高考语文复习前期规划

文章搜索
万题库小程序
万题库小程序
·章节视频 ·章节练习
·免费真题 ·模考试题
微信扫码,立即获取!
扫码免费使用
国家 北京 天津 上海 重庆
河北 山西 辽宁 吉林 江苏
浙江 安徽 福建 江西 山东
河南 湖北 湖南 广东 广西
海南 四川 贵州 云南 西藏
陕西 甘肃 宁夏 青海 新疆
黑龙江 内蒙古 更多
高考栏目导航
版权声明:如果高考网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本高考网内容,请注明出处。
免费复习资料
最新高考资讯
文章责编:songxiaoxuan