一、集合相关概念
1、集合中元素的特性
⑴元素的确定性:组成集合的元素必须是确定的。
⑵元素的互异性:集合中不得有重复的元素。
⑶元素的无序性:集合中元素的排列不遵循某种顺序,是随意排列的。
2、集合的表示方法
⑴列举法:将集合中元素一一列出。
⑵描述法:将集合中元素的公共属性用语言描述出来。
⑶解析法:用解析式的方式描述出集合元素的公共属性。
⑷图示法:用韦恩图直观的画出集合中的元素。
3、集中特殊数集的表示方法
自然数集: N 正整数集:N+
整数集:Z 有理数集:Q
实数集:R 空集:Φ
二、集合间的基本关系——子集与真子集
1、自反性——任何一个集合都是它本身的子集:A?A。
2、如果A?B 且 A≠B,则,A是B的真子集。
3、传递性:如果A?B,B?C,则A?C。
4、如果A?B且B?A,则A=B。
5、空集是任何集合的子集,空集是任何非空集合的真子集。
6、有n 个元素的集合,有 2n个子集,有2n-1 个真子集。
四、函数的相关概念
1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。
★2、函数定义域的解题思路:
⑴ 若x处于分母位置,则分母x不能为0。
⑵ 偶次方根的被开方数不小于0。
⑶ 对数式的真数必须大于0。
⑷ 指数对数式的底,不得为1,且必须大于0。
⑸ 指数为0时,底数不得为0。
⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。
⑺ 实际问题中的函数的定义域还要保证实际问题有意义。
3、相同函数
⑴ 表达式相同:与表示自变量和函数值的字母无关。
⑵ 定义域一致,对应法则一致。
4、函数值域的求法
⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。
⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。
⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。
⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。
5、函数图像的变换
⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。
⑵ 伸缩变换:在x前加上系数。
⑶ 对称变换:高中阶段不作要求。
6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。
⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。
⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。
⑶ 不要求集合B中的每一个元素在集合A中都有原象。
7、分段函数
⑴ 在定义域的不同部分上有不同的解析式表达式。
⑵ 各部分自变量和函数值的取值范围不同。
⑶ 分段函数的定义域是各段定义域的交集,值域是各段值域的并集。
8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g的复合函数。
微信搜索"考试吧高中资讯" 关注也可获得高考秘籍
编辑推荐:
·2019高考理综全国Ⅱ卷化学试卷点评 (2019-6-8 22:55:25)
·2019高考理综全国Ⅱ卷物理试卷点评 (2019-6-8 22:55:25)
·2019高考文综全国Ⅱ卷历史试卷点评 (2019-6-8 22:52:25)
·2019高考文综全国Ⅰ卷思想政治试卷解析 (2019-6-8 17:30:32)
·2019高考文综全国Ⅰ卷历史试卷点评 (2019-6-8 17:26:46)
·免费真题 ·模考试题
2022年上海高考作文题目已公布
2022年湖南高考地理答案已公布
2022年湖南高考生物答案已公布
2022年广东高考地理试题答案已公布
2022年湖南高考生物真题已公布
2022年广东高考真题及答案汇总
2022年浙江高考真题及答案汇总
2022年广东高考生物真题及答案已公布(完整版)
2022年浙江高考政治真题及答案已公布(完整版)
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |