数形结合思想在解题中的应用
一、知识整合
1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过"以形助数,以数解形",使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究"以形助数"。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
点击下载全部:高三数学[人教版]各题型解法:数形结合思想
相关推荐:高考解题能力大突破:数学解题中的通性通法备考复习:探索2010年高考数学最有效复习方法
历年高考各学科常考基础题大全(文科数学卷)
看了本文的网友还看了
·2021高考数学甲全国卷比2020年难度大?看分析! (2021-6-10 14:59:11)
·2021高考数学全国乙卷整体点评 (2021-6-10 9:42:40)
·2021年高考数学试卷难度大吗? (2021-6-9 17:37:53)
·2021年高考数学试题有这3个特点 速看! (2021-6-9 9:31:53)
·2021年高考数学试题评析(新高考全国卷I) (2021-6-8 19:52:03)
·命题专家评析2021年高考数学全国卷试题 (2021-6-8 17:43:53)
·2021高考数学全国乙卷整体点评 (2021-6-10 9:42:40)
·2021年高考数学试卷难度大吗? (2021-6-9 17:37:53)
·2021年高考数学试题有这3个特点 速看! (2021-6-9 9:31:53)
·2021年高考数学试题评析(新高考全国卷I) (2021-6-8 19:52:03)
·命题专家评析2021年高考数学全国卷试题 (2021-6-8 17:43:53)
万题库小程序
·章节视频 ·章节练习
·免费真题 ·模考试题
·免费真题 ·模考试题
微信扫码,立即获取!
扫码免费使用
全国各地2023年高考《语文》作文题目汇总
2022年上海高考作文题目已公布
2022年湖南高考地理答案已公布
2022年湖南高考生物答案已公布
2022年广东高考地理试题答案已公布
2022年湖南高考生物真题已公布
2022年广东高考真题及答案汇总
2022年浙江高考真题及答案汇总
2022年广东高考生物真题及答案已公布(完整版)
2022年浙江高考政治真题及答案已公布(完整版)
2022年上海高考作文题目已公布
2022年湖南高考地理答案已公布
2022年湖南高考生物答案已公布
2022年广东高考地理试题答案已公布
2022年湖南高考生物真题已公布
2022年广东高考真题及答案汇总
2022年浙江高考真题及答案汇总
2022年广东高考生物真题及答案已公布(完整版)
2022年浙江高考政治真题及答案已公布(完整版)
各地高考答案
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |
高考栏目导航