自主命题
统一命题
单独报考
您现在的位置: 考试吧 > 2021高考 > 高考数学 > 高考数学模拟试题 > 正文

2016高考数学提分专练及答案:三角函数的图象与性质

来源:考试吧 2016-3-15 14:16:08 要考试,上考试吧! 万题库
2016高考数学提分专练及答案:三角函数的图象与性质,更多2016高考资讯、2016高考报名时间、2016高考报考条件、2016高考经验等信息,请及时关注考试吧高考网或关注“566高考”微信获取相关信息!

  解析:(1)由a∥b得,2cos2x+2sin xcos x-y=0,

  即y=2cos2x+2sin xcos x

  =cos 2x+sin 2x+1=2sin+1,

  所以f(x)=2sin+1.

  又T===π,

  所以函数f(x)的最小正周期为π.

  (2)由(1)易得M=3,

  于是由f=M=3,即2sin+1=3sin=1,因为A为三角形的内角,所以A=.

  由余弦定理a2=b2+c2-2bccos A得4=b2+c2-bc≥2bc-bc=bc,解得bc≤4,于是当且仅当b=c=2时,bc取得最大值,且最大值为4.

  11.已知f(x)=sin+cos+sin 2x,x[0,π].

  (1)求函数f(x)的最小正周期和单调区间;

  (2)若ABC中,f=,a=2,b=,求角C.

  命题立意:本题主要考查两角和与差的正、余弦公式及三角函数的性质.(1)根据两角和与差的三角函数公式将函数f(x)化简,然后在所给角的取值范围内讨论函数的单调性;(2)利用正弦定理进行求解.

  解析:(1)因为f(x)=sin+cos+sin 2x=sin 2x·cos +cos 2x·sin +cos 2x·cos +sin 2x·sin +sin 2x=sin 2x+cos 2x+cos 2x-sin 2x+sin 2x=sin 2x+cos 2x=sin.

  所以f(x)的最小正周期T==π.

  因为x[0,π],所以2x+,

  当2x+,即x时,函数f(x)为单调递增函数;

  当2x+,即x时,函数f(x)为单调递减函数;

  当2x+,即x时,函数f(x)为单调递增函数.

  所以函数f(x)的单调递增区间为,单调递减区间为.

  (2)因为在ABC中,f=,

  所以sin=,所以sin=1,

  因为0

  又因为a=2,b=,所以由正弦定理=,得=,

  所以sin B=,即B=或B=,

  所以C=或C=.

  链接高考:高考对于三角函数的考查一般是综合考查同角三角函数关系、诱导公式、倍角公式和两角和与差的三角函数公式,运用这些公式先对函数解析式进行化简,再进一步研究其性质.

  12.已知函数f(x)=Asin(2x+θ),其中A≠0,θ.

  (1)若函数f(x)的图象过点E,F,求函数f(x)的解析式;

  (2)如图,点M,N是函数y=f(x)的图象在y轴两侧与x轴的两个相邻交点,函数图象上一点P满足·=,求函数f(x)的最大值.

  命题立意:本题考查三角函数的恒等变换、平面向量的相关内容以及由f(x)=Asin(ωx+φ)的部分图象确定其解析式等知识.对于第(1)问,根据函数f(x)的图象过点E,F建立方程组,可求得θ的值,利用f=,可求得A的值,从而可得函数解析式;对于第(2)问,一种方法是先求出点M,N的坐标,再利用·=,即可求出函数f(x)的最大值;另一种方法是过点P作PC垂直x轴于点C,利用·=,求得||=,从而||=||-||=,由此可得θ+2t=,利用P在函数f(x)图象上,即可求得函数f(x)的最大值.

  解析:(1) 函数f(x)的图象过点E,F,

  ∴ sin=sin,

  展开得cos θ+sin θ=.

  cos θ=sin θ,tan θ=,

  θ∈, θ=,

  函数f(x)=Asin,

  f=,

  A=2.

  f(x)=2sin.

  (2)解法一:令f(x)=Asin(2x+θ)=0, 2x+θ=kπ,kZ, 点M,N分别位于y轴两侧,则可得M,N,

  =,=,

  ·==, +t=,

  θ+2t=.

  P在函数图象上,

  Asin(θ+2t)=Asin=,

  A=. 函数f(x)的最大值为.

  解法二:过点P作PC垂直x轴于点C.

  令f(x)=Asin(2x+θ)=0. 2x+θ=kπ,kZ,

  M,N分别位于y轴两侧,可得M,N, ||=,

  ·=||·||cos PNM

  =·||cos PNM=·||=,

  ||=, ||=||-||=,

  即+t=.

  θ+2t=, Asin(θ+2t)=Asin =,

  A=. 函数f(x)的最大值为.

  名师语要:本题较好的把三角函数与平面向量结合起来进行考查,既考查了三角函数有关的运算,又考查了向量的数量积运算.近几年的高考中常常把三角函数与平面向量结合考查,也常常把三角函数与正余弦定理结合起来考查.

  13.已知函数f(x)=2sin xcos x+2cos2x-1(xR).

  (1)求函数f(x)的最小正周期及在区间上的最大值和最小值;

  (2)若f(x0)=,x0,求cos 2x0的值.

  解析:(1)由f(x)=2sin xcos x+2cos2x-1,得

  f(x)=(2sin xcos x)+(2cos2x-1)

  =sin 2x+cos 2x=2sin,

  所以函数f(x)的最小正周期为π.

  因为f(x)=2sin在区间上为增函数,在区间上为减函数,又f(0)=1,f=2,f=-1,所以函数f(x)在区间上的最大值为2,最小值为-1.

  (2)由(1)可知f(x0)=2sin,

  因为f(x0)=,所以sin=.

  由x0,得2x0+,

  从而cos=-=-,

  所以cos 2x0=cos

  =coscos +sinsin

关注"566高考"官方微信,第一时间获取2016高考备考资料!

上一页  1 2 

  相关推荐:

  各地2016年高考志愿填报时间及方式汇总

  2016年高考倒计时88天:盯紧错题集 拿到好分数

  专家指导:2016高考作文热点素材运用技巧及提分秘籍

  2016高考文科生必看:盘点2015年习近平都去哪了

  2016高考数学:区分三大题型 不同技巧应考

文章搜索
万题库小程序
万题库小程序
·章节视频 ·章节练习
·免费真题 ·模考试题
微信扫码,立即获取!
扫码免费使用
国家 北京 天津 上海 重庆
河北 山西 辽宁 吉林 江苏
浙江 安徽 福建 江西 山东
河南 湖北 湖南 广东 广西
海南 四川 贵州 云南 西藏
陕西 甘肃 宁夏 青海 新疆
黑龙江 内蒙古 更多
高考栏目导航
版权声明:如果高考网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本高考网内容,请注明出处。
免费复习资料
最新高考资讯
文章责编:songxiaoxuan