解析:(1)由a∥b得,2cos2x+2sin xcos x-y=0,
即y=2cos2x+2sin xcos x
=cos 2x+sin 2x+1=2sin+1,
所以f(x)=2sin+1.
又T===π,
所以函数f(x)的最小正周期为π.
(2)由(1)易得M=3,
于是由f=M=3,即2sin+1=3sin=1,因为A为三角形的内角,所以A=.
由余弦定理a2=b2+c2-2bccos A得4=b2+c2-bc≥2bc-bc=bc,解得bc≤4,于是当且仅当b=c=2时,bc取得最大值,且最大值为4.
11.已知f(x)=sin+cos+sin 2x,x[0,π].
(1)求函数f(x)的最小正周期和单调区间;
(2)若ABC中,f=,a=2,b=,求角C.
命题立意:本题主要考查两角和与差的正、余弦公式及三角函数的性质.(1)根据两角和与差的三角函数公式将函数f(x)化简,然后在所给角的取值范围内讨论函数的单调性;(2)利用正弦定理进行求解.
解析:(1)因为f(x)=sin+cos+sin 2x=sin 2x·cos +cos 2x·sin +cos 2x·cos +sin 2x·sin +sin 2x=sin 2x+cos 2x+cos 2x-sin 2x+sin 2x=sin 2x+cos 2x=sin.
所以f(x)的最小正周期T==π.
因为x[0,π],所以2x+,
当2x+,即x时,函数f(x)为单调递增函数;
当2x+,即x时,函数f(x)为单调递减函数;
当2x+,即x时,函数f(x)为单调递增函数.
所以函数f(x)的单调递增区间为,单调递减区间为.
(2)因为在ABC中,f=,
所以sin=,所以sin=1,
因为0
又因为a=2,b=,所以由正弦定理=,得=,
所以sin B=,即B=或B=,
所以C=或C=.
链接高考:高考对于三角函数的考查一般是综合考查同角三角函数关系、诱导公式、倍角公式和两角和与差的三角函数公式,运用这些公式先对函数解析式进行化简,再进一步研究其性质.
12.已知函数f(x)=Asin(2x+θ),其中A≠0,θ.
(1)若函数f(x)的图象过点E,F,求函数f(x)的解析式;
(2)如图,点M,N是函数y=f(x)的图象在y轴两侧与x轴的两个相邻交点,函数图象上一点P满足·=,求函数f(x)的最大值.
命题立意:本题考查三角函数的恒等变换、平面向量的相关内容以及由f(x)=Asin(ωx+φ)的部分图象确定其解析式等知识.对于第(1)问,根据函数f(x)的图象过点E,F建立方程组,可求得θ的值,利用f=,可求得A的值,从而可得函数解析式;对于第(2)问,一种方法是先求出点M,N的坐标,再利用·=,即可求出函数f(x)的最大值;另一种方法是过点P作PC垂直x轴于点C,利用·=,求得||=,从而||=||-||=,由此可得θ+2t=,利用P在函数f(x)图象上,即可求得函数f(x)的最大值.
解析:(1) 函数f(x)的图象过点E,F,
∴ sin=sin,
展开得cos θ+sin θ=.
cos θ=sin θ,tan θ=,
θ∈, θ=,
函数f(x)=Asin,
f=,
A=2.
f(x)=2sin.
(2)解法一:令f(x)=Asin(2x+θ)=0, 2x+θ=kπ,kZ, 点M,N分别位于y轴两侧,则可得M,N,
=,=,
·==, +t=,
θ+2t=.
P在函数图象上,
Asin(θ+2t)=Asin=,
A=. 函数f(x)的最大值为.
解法二:过点P作PC垂直x轴于点C.
令f(x)=Asin(2x+θ)=0. 2x+θ=kπ,kZ,
M,N分别位于y轴两侧,可得M,N, ||=,
·=||·||cos PNM
=·||cos PNM=·||=,
||=, ||=||-||=,
即+t=.
θ+2t=, Asin(θ+2t)=Asin =,
A=. 函数f(x)的最大值为.
名师语要:本题较好的把三角函数与平面向量结合起来进行考查,既考查了三角函数有关的运算,又考查了向量的数量积运算.近几年的高考中常常把三角函数与平面向量结合考查,也常常把三角函数与正余弦定理结合起来考查.
13.已知函数f(x)=2sin xcos x+2cos2x-1(xR).
(1)求函数f(x)的最小正周期及在区间上的最大值和最小值;
(2)若f(x0)=,x0,求cos 2x0的值.
解析:(1)由f(x)=2sin xcos x+2cos2x-1,得
f(x)=(2sin xcos x)+(2cos2x-1)
=sin 2x+cos 2x=2sin,
所以函数f(x)的最小正周期为π.
因为f(x)=2sin在区间上为增函数,在区间上为减函数,又f(0)=1,f=2,f=-1,所以函数f(x)在区间上的最大值为2,最小值为-1.
(2)由(1)可知f(x0)=2sin,
因为f(x0)=,所以sin=.
由x0,得2x0+,
从而cos=-=-,
所以cos 2x0=cos
=coscos +sinsin
关注"566高考"官方微信,第一时间获取2016高考备考资料!
相关推荐:
·2020年高考英语抢分题型专练及答案(5) (2020-3-22 15:31:57)
·2020年高考英语抢分题型专练及答案(4) (2020-3-22 15:31:24)
·2020年高考英语抢分题型专练及答案(3) (2020-3-22 15:26:01)
·2020年高考英语抢分题型专练及答案(2) (2020-3-22 15:23:38)
·2020年高考英语抢分题型专练及答案(1) (2020-3-22 15:22:32)
·免费真题 ·模考试题
2022年上海高考作文题目已公布
2022年湖南高考地理答案已公布
2022年湖南高考生物答案已公布
2022年广东高考地理试题答案已公布
2022年湖南高考生物真题已公布
2022年广东高考真题及答案汇总
2022年浙江高考真题及答案汇总
2022年广东高考生物真题及答案已公布(完整版)
2022年浙江高考政治真题及答案已公布(完整版)
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |