文章责编:admin
看了本文的网友还看了学历| 高考 中考 考研 自考 成考 外语| 四六级 职称英语 商务英语 公共英语 资格| 公务员 报关员 银行 证券 司法 导游 教师 计算机| 等考 软考
工程|一建 二建 造价师 监理师 咨询师 安全师 结构师 估价师 造价员 会计| 会计证 会计职称 注会 经济师 税务师 医学| 卫生资格 医师 药师 [更多]
天津市第四十二中学 张鼎言
(一)线线,线面,面面
复习导引:线线垂直一般情况下转化为线面垂直,用三垂线定理或逆定理。异面直线成角或线面成角,需平行移动异面直线中的一条或两条。如何平移?抓住已给线段中点,作出线段的辅助中点,用好三角形中位线或等腰三角形底边中线是重要的途径。在线面成角中,线上的点到平面的垂线是关键,解决问题的方法是利用已有垂线或直接作平面的垂线。
1.如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<-)。
(I)求证:平面VAB⊥VCD;
(II)当角θ变化时,求直线BC与平面VAB所成的角的取值范围。
证明(1)∵AC=BC,D是AB的中点,
∴AB⊥CD,
又VC⊥底面ABC,
∴VC⊥AB
∴AB⊥平面VCD
又AB平面VAB
∴平面VAB⊥平面VCD
分析(2)在平面VCD中,过C作CH⊥VD,交VD于H,连CH。
由(1)CH⊥VD,VD是平面VCD与平面VAB的交线,
CH⊥平面VAB
∠CBH为直线BC与平面VAB所成角
∴CH=a·sin∠CBH
CH=CD·sinθ
又CD·AB=AC·BC→CD=-a,
∴-a·sinθ=a·sin∠CBH
∴sin∠CBH=-·sinθ
θ为直角△VCD中的锐角,
0<θ<-
0
∴0<∠CBH<-
即直线BC与平面VAB所成角的取值范围为(0,-)。