首页 - 网校 - 面授 - 团购 - 书城 - 视线 - 模拟考场 - 考友录 - 论坛 - 导航 -
首页考试吧论坛Exam8视线考试商城网络课程模拟考试考友录实用文档求职招聘论文下载
2013中考
法律硕士
2013高考
MBA考试
2013考研
MPA考试
在职研
中科院
考研培训 自学考试 成人高考
四 六 级
GRE考试
攻硕英语
零起点日语
职称英语
口译笔译
申硕英语
零起点韩语
商务英语
日语等级
GMAT考试
公共英语
职称日语
新概念英语
专四专八
博思考试
零起点英语
托福考试
托业考试
零起点法语
雅思考试
成人英语三级
零起点德语
等级考试
华为认证
水平考试
Java认证
职称计算机 微软认证 思科认证 Oracle认证 Linux认证
公 务 员
导游考试
物 流 师
出版资格
单 证 员
报 关 员
外 销 员
价格鉴证
网络编辑
驾 驶 员
报检员
法律顾问
管理咨询
企业培训
社会工作者
银行从业
教师资格
营养师
保险从业
普 通 话
证券从业
跟 单 员
秘书资格
电子商务
期货考试
国际商务
心理咨询
营 销 师
司法考试
国际货运代理人
人力资源管理师
广告师职业水平
卫生资格 执业医师 执业药师 执业护士
会计从业资格
基金从业资格
统计从业资格
经济师
精算师
统计师
会计职称
法律顾问
ACCA考试
注册会计师
资产评估师
审计师考试
高级会计师
注册税务师
国际内审师
理财规划师
美国注册会计师
一级建造师
安全工程师
设备监理师
公路监理师
公路造价师
二级建造师
招标师考试
物业管理师
电气工程师
建筑师考试
造价工程师
注册测绘师
质量工程师
岩土工程师
造价员考试
注册计量师
环保工程师
化工工程师
咨询工程师
结构工程师
城市规划师
材料员考试
监理工程师
房地产估价
土地估价师
安全评价师
房地产经纪人
投资项目管理师
环境影响评价师
土地登记代理人
宝宝起名
缤纷校园
实用文档 英语学习 作文大全 求职招聘 论文下载 访谈|游戏
自主命题地区:北京 | 上海 | 广东 | 山东 | 江苏 | 浙江 | 湖北 | 四川 | 天津 | 陕西 | 湖南 | 福建 | 重庆 | 安徽 | 辽宁 | 江西 | 海南 | 宁夏
统一命题地区:吉林 | 山西 | 广西 | 云南 | 新疆 | 青海 | 甘肃 | 西藏 | 河北 | 贵州 | 河南 | 黑龙江 | 内蒙古单独报考:香港 | 澳门 | 台湾
您现在的位置: 考试吧 > 2013高考 > 高考数学 > 高考数学辅导 > 正文

高三数学复习:你留心过“解题反思”吗?

很多同学每天都埋在题目之中,做了许多题,但是过一段时间,前面做过的题目全忘了,做了很多无用功。解决问题的最好办法就是精选典型的例题进行剖析,做好“解题后反思”,反思是一种以审慎的、吸收和批判的态度来对待自己的行为、方法、策略,并以一种开放的、积极的、顿悟的思维去思考,促使自身得到不断发展。这种思想行为在解题中的应用就是“解题反思”。解题反思是根据元认知理论对数学解题过程及解题后的再思,是对解题规律认识的不断深化的一种创造活动,从而培养同学们发现问题——提出问题——分析问题——解决问题——再发现问题的能力,这是提高复习效率和复习质量的有效方法之一。

实施新课程的第一个高考复习,难免产生迷茫之感。而且新课程内容多,教学时间紧、难点相对集中;习题编排存在一定缺陷,例如有的习题难易差别太大;板块式结构的合理性及如何发挥其功效也有待进一步研究等。由于这些问题的影响,师生都会有不适应、不理解之处,基础知识、基本技能总感觉把握不住,夯不实;知识连贯不起来,复习了后面忘了前面等等。因此,怎样提高高考复习的质量和效果正是高三年级师生面对且急于探讨解决的首要问题。

那我们应该反思些什么?又怎么反思?我想从四个方面谈谈。

一、对审题的反思

例1.①(2006年江苏卷)设a为实数,记函数f(x)=a■+■+■的最大值为g(a)。

(Ⅰ)设t=■+■,求t的取值范围,并把f(x)表示为t的函数m(t)

(Ⅱ)求g(a)

(Ⅲ)试求满足g(a)=g(■)的所有实数a。

②设a为实数,求函数f(x)=asinxcosx+sinx+cosx的最大值。

通过对比容易发现江苏卷的这道高考压轴题不过就是由我们非常熟悉的三角函数题①变化而来的。通过审题发现a■+■+■与asinxcosx+sinx+cosx结构上的关系,还原它的本来面目,难题也就不难了。

例2:①(2004年湖南卷文13)过点P(-1,2)且与曲线y=3x2-4x+2在点M(1,1)处的切线平行的直线方程是 。

②(2004年重庆卷文15)已知曲线y=■x3+■,则过点P(2,4)的切线方程是 。

在①题中求在点M处的切线方程,点M即是切点,故点M处的导数即是切线的斜率,学生很容易做对,但②题求的是过点P的切线方程,点P就不一定是切点,很多同学仍照搬①题的解法,就会导致错解。②题正确解法如下:

设切点坐标为(x0,■x03+■)

对y=■x3+■求导得y'=x2,则切线的斜率k=x02,

所以切线方程为y-(■x03+■)=x02(x–x0)

因为切线过点P(2,4),将点P坐标代入切线方程得4-(■x03+■)=x02(2–x0),解得x0=-1,或x0=2

过点P(2,4)的切线方程是y=x+2,或y=4x–4

同学们知道一道高考填空题是4分,“一字之差,谬之千里”。反思解题过程,问题出在审题不清上。

因此通过对审题的反思,同学们一要注意题目的变化,挖掘题目之间的内在联系,把新的问题转化为简单、熟悉的问题;二要深抠概念, 严谨思维,紧紧抓住关键词语,善于思维辨析,自觉进行数学三种语言的自如转化(文字语言、符号语言、图象语言)。

二、对解题思维过程的反思

很多同学把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法、基本思维规律的学习。复习时或急急忙忙把公式、定理推证看一遍,或干脆不看公式的推导就直接做题,试图通过大量地做题去总结出一些方法,规律。结果却是多数同学不但“悟”不出方法、规律,而且只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。其实数学定理、公式的发现、推证的过程本身就蕴含着数学的思维能力及重要的解题方法和规律。

例3:①动点M(x,y)满足5■=|3x+4y–1|,则动点M的轨迹为( )

A.直线 B.椭圆

C.双曲线 D.抛物线

②动点M(x,y)满足■ =|3x+4y–1|,则动点M的轨迹为( )

A.直线 B.椭圆

C.双曲线 D.抛物线

③动点M(x,y)满足■=|xcos+ysin –1|,是常数,则动点M的轨迹为( )

A.直线 B.椭圆

C.双曲线 D.抛物线

1 2  下一页
文章责编:admin 
看了本文的网友还看了
文章搜索
中国最优秀高考名师都在这里!
扈之霖老师
在线名师:扈之霖老师
   新东方在线特聘教学专家,北京重点中学特级教师,全国著名物理教...[详细]
高考栏目导航
版权声明:如果2013高考网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本2013高考网内容,请注明出处。