9(B).直线、平面、简单几何体
考试内容:
平面及其基本性质.平面图形直观图的画法.
平行直线.
直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理及其逆定理.
两个平面的位置关系.
空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积.
直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离.
直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的角.向量在平面内的射影.
平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定和性质.
多面体.正多面体.棱柱.棱锥.球.
考试要求:
(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.
(2)掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念,掌握直线和平面垂直的判定定理;掌握三垂线定理及其逆定理.
(3)理解空间向量的概念,掌握空间向量的加法、减法和数乘.
(4)了解空间向量的基本定理;理解空间向量坐标的概念,掌握空间向量的坐标运算.
(5)掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间距离公式.
(6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念.
(7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离.掌握直线和平面垂直的性质定理.掌握两个平面平行、垂直的判定定理和性质定理.
(8)了解多面体、凸多面体的概念,了解正多面体的概念.
(9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.
(10)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.
(11)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.
(考生可在9(A)和9(B)中任选其一)
10.排列、组合、二项式定理
考试内容:
分类计数原理与分步计数原理.
排列.排列数公式.
组合.组合数公式.组合数的两个性质.
二项式定理.二项展开式的性质.
考试要求:
(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.
(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.
(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.
(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.
11.概率
考试内容:
随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.
考试要求:
(1)了解随机事件的发生存在着规律性和随机事件概率的意义.
(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.
(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.
(4)会计算事件在n次独立重复试验中恰好发生k次的概率.
12.概率与统计
考试内容:
离散型随机变量的分布列. 离散型随机变量的期望值和方差.
抽样方法.总体分布的估计.正态分布.线性回归.
考试要求:
(1)了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列.
(2)了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差.
(3)会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本.
(4)会用样本频率分布去估计总体分布.
(5)了解正态分布的意义及主要性质.
(6)了解线性回归的方法和简单应用.
13.极限
考试内容:
教学归纳法.数学归纳法应用.
数列的极限.
函数的极限.根限的四则运算.函数的连续性.
(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.
(2)了解数列极限和函数极限的概念.
(3)掌握极限的四则运算法则;会求某些数列与函数的极限.
(4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质.
专家解读:
3.理科的极限部分,将考试要求中的“(4)了解函数连续的意义,理解闭区间上连续函数有最大值和最小值的性质”改为“(4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质”。