解:-+--2-=(---)+(---)=-+-
又---=-
∴-·(-+-)=0
∴等腰三角形
7. 已知-A=-,-C=-,-C=-且满足(---)·■=0(>0),则△ABC为( )
A.等边三角形 B.等腰三角形
C.直角三角形D.不确定
解: 式子的含义就是角分线与高线合一。故选B。
8.若平面四边形ABCD满足-+-=-,(---)·■=0,则该四边形一定是
A. 直角梯形 B. 矩形
C. 菱形 D. 正方形
答案为C。第一个条件告诉我们这是平行四边形,而第二个条件则说明对角线互相垂直。
五、向量与解析几何的综合:
9.设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若-+-+-=0,
解:由-+-+-=0可知,F为三角形ABC的重心,故xg=-,而|-|+|-|+|-|=xA+xB+xC+3-故原式值为6。
10.已知A、B、D三点不在一条直线上,且A(-2,0),B(2,0)|-|=2,-=-(-+-) 求E点的轨迹方程;
解:(1)设E(x,y),-=-+- ,则四边形ABCD为平行四边形,而-=-(-+-)E为AC的中点
∴OE为△ABD的中位线
∴|-|=-|-|=1
∴E点的轨迹方程是:x2+y2=1(y≠0)
点评:本题正是关注了向量几何意义得以实现运算简化。
11.设椭圆方程为x2+-=1,过点M(0,1)的直线l交椭圆于点A、B,O是坐标原点,点P满足-=-(-+-),点N的坐标为(-,-),当l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2)|-|的最小值与最大值.
(1)解:设点P的坐标为(x,y),因A(x1,y1)、B(x2,y2) 在椭圆上,所以x12+-=1④ x22+-=1 ⑤
④—⑤得x12-x22+-(y12-y22)=0,所以(x1-x2)(x1+x2)+-(y1-y2)(y1+y2)=0
当x1≠x2时,有x1+x2+-(y1+y2)·■=0 ⑥
-
将⑦代入⑥并整理得4x2+y2-y=0 ⑧
当x1=x2时,点A、B的坐标为(0,2)、(0,-2),这时点P的坐标为(0,0)
也满足⑧,所以点P的轨迹方程为-+-=1
(2)解:由点P的轨迹方程知x2≤-,即--≤x≤-。
所以|-|2=(x--)2+(y--)2=(x--)2+--4x2=-3(x+-)2+-……10分
故当x=-,|-|取得最小值,最小值为-;当x=--时,|-|取得最大值,
最大值为-。
点评:本题突出向量的坐标运算与解析几何求轨迹方法的结合,以及二次函数求最值问题。
12.在△ABC中,-=-,-=-又E点在BC边上,且满足3-=2-,以A,B为焦点的双曲线过C,E两点,(1)求此双曲线方程,(2)设P是此双曲线上任意一点,过A点作APB的平分线的垂线,垂足为M,求M点轨迹方程。
解:本题只解第一问,在这里向量的应用是很有新意的。
(1)以线段AB中点O为原点,直线AB为x轴建立直角坐标系,设A(-1, 0) B(1, 0)作CO⊥AB于D
由已知-=-
∴|-|cosA=-
∴|-|=-
又同理-=-
∴|-|=-
设双曲线---=1(a>0,b>0) C(--,h) E(x1,y1)
∵3-=2-
-
E,C在双曲线上
-
∴双曲线为7x2--y2=1
公式整理/王翠玮
[责任编辑:moninfu]