首页 - 网校 - 面授 - 团购 - 书城 - 视线 - 模拟考场 - 考友录 - 论坛 - 导航 -
首页考试吧论坛Exam8视线考试商城网络课程模拟考试考友录实用文档求职招聘论文下载
2013中考
法律硕士
2013高考
MBA考试
2013考研
MPA考试
在职研
中科院
考研培训 自学考试 成人高考
四 六 级
GRE考试
攻硕英语
零起点日语
职称英语
口译笔译
申硕英语
零起点韩语
商务英语
日语等级
GMAT考试
公共英语
职称日语
新概念英语
专四专八
博思考试
零起点英语
托福考试
托业考试
零起点法语
雅思考试
成人英语三级
零起点德语
等级考试
华为认证
水平考试
Java认证
职称计算机 微软认证 思科认证 Oracle认证 Linux认证
公 务 员
导游考试
物 流 师
出版资格
单 证 员
报 关 员
外 销 员
价格鉴证
网络编辑
驾 驶 员
报检员
法律顾问
管理咨询
企业培训
社会工作者
银行从业
教师资格
营养师
保险从业
普 通 话
证券从业
跟 单 员
秘书资格
电子商务
期货考试
国际商务
心理咨询
营 销 师
司法考试
国际货运代理人
人力资源管理师
广告师职业水平
卫生资格 执业医师 执业药师 执业护士
会计从业资格
基金从业资格
统计从业资格
经济师
精算师
统计师
会计职称
法律顾问
ACCA考试
注册会计师
资产评估师
审计师考试
高级会计师
注册税务师
国际内审师
理财规划师
美国注册会计师
一级建造师
安全工程师
设备监理师
公路监理师
公路造价师
二级建造师
招标师考试
物业管理师
电气工程师
建筑师考试
造价工程师
注册测绘师
质量工程师
岩土工程师
造价员考试
注册计量师
环保工程师
化工工程师
咨询工程师
结构工程师
城市规划师
材料员考试
监理工程师
房地产估价
土地估价师
安全评价师
房地产经纪人
投资项目管理师
环境影响评价师
土地登记代理人
宝宝起名
缤纷校园
实用文档 英语学习 作文大全 求职招聘 论文下载 访谈|游戏
自主命题地区:北京 | 上海 | 广东 | 山东 | 江苏 | 浙江 | 湖北 | 四川 | 天津 | 陕西 | 湖南 | 福建 | 重庆 | 安徽 | 辽宁 | 江西 | 海南 | 宁夏
统一命题地区:吉林 | 山西 | 广西 | 云南 | 新疆 | 青海 | 甘肃 | 西藏 | 河北 | 贵州 | 河南 | 黑龙江 | 内蒙古单独报考:香港 | 澳门 | 台湾
您现在的位置: 考试吧 > 2013高考 > 高考数学 > 高考数学辅导 > 正文

高考数学复习:平面向量解题要点与实际应用

来源:不详 2008-1-31 10:39:00 考试吧:中国教育培训第一门户 模拟考场

解:-+--2-=(---)+(---)=-+-

又---=-

∴-·(-+-)=0

∴等腰三角形

7. 已知-A=-,-C=-,-C=-且满足(---)·■=0(>0),则△ABC为(  )

A.等边三角形 B.等腰三角形

C.直角三角形D.不确定

解: 式子的含义就是角分线与高线合一。故选B。

8.若平面四边形ABCD满足-+-=-,(---)·■=0,则该四边形一定是

A. 直角梯形 B. 矩形

C. 菱形 D. 正方形

答案为C。第一个条件告诉我们这是平行四边形,而第二个条件则说明对角线互相垂直。

五、向量与解析几何的综合:

9.设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若-+-+-=0,

解:由-+-+-=0可知,F为三角形ABC的重心,故xg=-,而|-|+|-|+|-|=xA+xB+xC+3-故原式值为6。

10.已知A、B、D三点不在一条直线上,且A(-2,0),B(2,0)|-|=2,-=-(-+-) 求E点的轨迹方程;

解:(1)设E(x,y),-=-+- ,则四边形ABCD为平行四边形,而-=-(-+-)E为AC的中点

∴OE为△ABD的中位线

∴|-|=-|-|=1

∴E点的轨迹方程是:x2+y2=1(y≠0)

点评:本题正是关注了向量几何意义得以实现运算简化。

11.设椭圆方程为x2+-=1,过点M(0,1)的直线l交椭圆于点A、B,O是坐标原点,点P满足-=-(-+-),点N的坐标为(-,-),当l绕点M旋转时,求:

(1)动点P的轨迹方程;

(2)|-|的最小值与最大值.

(1)解:设点P的坐标为(x,y),因A(x1,y1)、B(x2,y2) 在椭圆上,所以x12+-=1④ x22+-=1 ⑤

④—⑤得x12-x22+-(y12-y22)=0,所以(x1-x2)(x1+x2)+-(y1-y2)(y1+y2)=0

当x1≠x2时,有x1+x2+-(y1+y2)·■=0 ⑥

-

将⑦代入⑥并整理得4x2+y2-y=0 ⑧

当x1=x2时,点A、B的坐标为(0,2)、(0,-2),这时点P的坐标为(0,0)

也满足⑧,所以点P的轨迹方程为-+-=1

(2)解:由点P的轨迹方程知x2≤-,即--≤x≤-。

所以|-|2=(x--)2+(y--)2=(x--)2+--4x2=-3(x+-)2+-……10分

故当x=-,|-|取得最小值,最小值为-;当x=--时,|-|取得最大值,

最大值为-。

点评:本题突出向量的坐标运算与解析几何求轨迹方法的结合,以及二次函数求最值问题。

12.在△ABC中,-=-,-=-又E点在BC边上,且满足3-=2-,以A,B为焦点的双曲线过C,E两点,(1)求此双曲线方程,(2)设P是此双曲线上任意一点,过A点作APB的平分线的垂线,垂足为M,求M点轨迹方程。

解:本题只解第一问,在这里向量的应用是很有新意的。

(1)以线段AB中点O为原点,直线AB为x轴建立直角坐标系,设A(-1, 0) B(1, 0)作CO⊥AB于D

由已知-=-

∴|-|cosA=-

∴|-|=-

又同理-=-

∴|-|=-

设双曲线---=1(a>0,b>0) C(--,h) E(x1,y1)

∵3-=2-

-

E,C在双曲线上

-

∴双曲线为7x2--y2=1

公式整理/王翠玮

[责任编辑:moninfu]

文章责编:admin 
看了本文的网友还看了
文章搜索
中国最优秀高考名师都在这里!
扈之霖老师
在线名师:扈之霖老师
   新东方在线特聘教学专家,北京重点中学特级教师,全国著名物理教...[详细]
高考栏目导航
版权声明:如果2013高考网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本2013高考网内容,请注明出处。