三、排除法策略
从已知条件出发,通过观察分析或推理运算各选项提供的信息,将错误的选项逐一排除,而获得正确的结论。
例1:(2005年高考题)不共面的四个定点到平面的距离都相等,这样的平面共有( )
A.3个B.4个C. 6个D. 7个
解:第一种情况:当一个点在平面的一侧,其余3个点在平面的别一侧时,共有4个,排除A,B。
第二种情况:当两个点在平面的一侧,其余两个点在的另一侧时共有3个,总共有7个,排除C,选择D。
四、特殊值法策略
根据选项的唯一正确性,利用符合条件的字母特殊值代入题干和选项,从而确定正确答案,其关键在于选取适当的特殊值[包括特殊点(特殊位置)、特殊函数、特殊数列、特殊图形等]。
例1:(2004年高考题)已知函数y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是()
A. (0,1) B.(1,2) C.(0,2) D.[2,+∞)
解:令,X1 =0, X2=1,则,可排除A、C
令a=3,x=1则2-ax=2-3<0,对数无意义,排除D,选择B。
五.代入验证法、估算法、数形结合法、极限法等其它方法策略
除上述的方法之外,高考数学选择题还有估算法、极限法等其它方法和技巧也可以灵活运用。
例1:(2004年湖南高考题)中,角A、B、C的对边长分别为a、b、c。若c-a等于AC边上的高h,那么的值是( )
A. 1 B. C. D. -1
解:若A→0,点C→点A此时,h→0,C→a,则,则选择A。
例2:(2005年湖北省高考题)根据市场调查结果,预测某种家用商品从年初开始的n个月内,积累的需求量Sn(万件)近似地满足(n=1、2、3、···12),据此预测在本年度内,需求量超过1.5万件的月份是( )
A. 5月、6月B. 6月、7月C. 7月、8月D. 8月、9月
解:由an=Sn-Sn-1可算出an ,由二次函数性质可算出a n的对称轴为7.5.当X=6时,an=1.5,为了大于1.5则x取7.8 ,选择C。
相关推荐:三部委联合发出通知:民族团结纳入高考范围高考名师指导:提高高考英语听力得分有钥匙
2010年高考语文胜之有道:暑假零存 高考整取
·2021高考数学全国乙卷整体点评 (2021-6-10 9:42:40)
·2021年高考数学试卷难度大吗? (2021-6-9 17:37:53)
·2021年高考数学试题有这3个特点 速看! (2021-6-9 9:31:53)
·2021年高考数学试题评析(新高考全国卷I) (2021-6-8 19:52:03)
·命题专家评析2021年高考数学全国卷试题 (2021-6-8 17:43:53)
·免费真题 ·模考试题
2022年上海高考作文题目已公布
2022年湖南高考地理答案已公布
2022年湖南高考生物答案已公布
2022年广东高考地理试题答案已公布
2022年湖南高考生物真题已公布
2022年广东高考真题及答案汇总
2022年浙江高考真题及答案汇总
2022年广东高考生物真题及答案已公布(完整版)
2022年浙江高考政治真题及答案已公布(完整版)
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |