2017年高考真题及答案 ※ 关注微信对答案 ※ 视频解析
2017年江苏高考数学试题延续了前几年的命题风格,注重基础,贴近课本。试题在立足基础、全面考查的前提下,注重能力的考查,体现了能力立意的命题原则。试卷结构稳定,知识点广,重点突出,层次分明,逐步深入,使学生解题入手容易。
注重基础,突出主干:数学试题紧扣教材,具有“上手容易”的特点。填空题第1—10题、解答题15、16题及附加题第21题的A、B、C、D 题都是容易题,学生适当进行运算就可以拿到这些基本分。填空题第11—14题,综合性就大了一些,思维含量较高,注重对数学思想方法的考查,但解决问题的思路和方法还是常见的,会有较好的区分度。解答题的第17题为解析几何题,改变了以往大运算量,学生都能动手做,并且能够得到较好的分数。第18题与平面几何知识有关联,关键是要将问题进行转化,突出了对数学思想方法的考查,如能增强些实际应用性,就更能体现应用价值。附加题的第22题,也是老师、学生预想中的试题,空间向量运算过关得分就很自然。解答题第19、20题和附加题第23题这样的把关题,都采用分层设问,各个小题的难度层层递进,螺旋上升。起点适当,所有的学生都能得到分,不同层次的考生均可有所收获。
试题在强调“通性”“通法”的前提下,渗透了中学数学知识中所蕴含的基本数学思想方法。如第11、12、13、14、16、17、20题的数形结合思想;第8、9、10、11、12、13、14、16、17、20题的函数方程思想;第11、14、16、20题的分类讨论思想;第5、6、7、13、15、19题的转化化归思想。
能力立意,适度创新:2017年江苏高考数学试题在重视考查基础的同时,突出对数学基本能力和综合能力、创新能力的考查。试题对空间想象、抽象概括、推理论证、运算求解、数据处理这五项数学基本能力的考查贯穿始终。例如,第7题就把函数的定义域、解一元二次不等式和几何概型进行有机综合;第12题就把平面向量的基本定理、三角函数、解三角形融合在了一起;第13题就把直线和圆、向量数量积和线性规划等联系在一起,第14题是对函数性质的综合考查。第19、20、23题都具有较高的思维要求,能够考查学生综合、灵活运用所学的数学知识和思想方法,创造性地解决问题的能力。特别是第19题,将新定义的“P(k)数列”和等差数列有序结合,有效检测了学生的学习潜能。
试题编制,注重解题思路方法的多样性和入口的宽泛性,既保证了各个能力层次的考生有所收获,又能让综合能力优秀的考生脱颖而出。
秦淮区教师发展中心特级教师 黄智华
微信搜索"566高考" 关注也可获得高考秘籍
相关推荐:
2017高考答案 | 2017高考真题 | 关注微信对答案 | 2017高考作文
·考试吧:2017年江苏高考英语试题(完整版) (2017-6-8 17:45:10)
·考试吧:2017年江苏高考英语试题(完整版) (2017-6-8 17:36:48)
·江苏高考语文卷选材平易亲切 数学难度和区分度较恰当 (2017-6-8 15:28:16)
·2017年江苏高考数学试卷点评:具体知识点有变化 (2017-6-8 10:59:35)
·考试吧:2017年江苏高考数学答案 (2017-6-7 21:45:35)
·免费真题 ·模考试题
2022年上海高考作文题目已公布
2022年湖南高考地理答案已公布
2022年湖南高考生物答案已公布
2022年广东高考地理试题答案已公布
2022年湖南高考生物真题已公布
2022年广东高考真题及答案汇总
2022年浙江高考真题及答案汇总
2022年广东高考生物真题及答案已公布(完整版)
2022年浙江高考政治真题及答案已公布(完整版)
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |