自主命题
统一命题
单独报考
您现在的位置: 考试吧 > 2021高考 > 高考数学 > 高考数学模拟试题 > 正文

2016高考数学提分专练及答案:导数的综合应用

来源:考试吧 2016-3-22 14:52:58 要考试,上考试吧! 万题库
2016高考数学提分专练及答案:导数的综合应用,更多2016高考资讯、2016高考报名时间、2016高考报考条件、2016高考经验等信息,请及时关注考试吧高考网或关注“566高考”微信获取相关信息!

  >>>>>2016年高考数学提分专项练习及答案汇总

  一、选择题

  1.设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0且g(3)=0,则不等式f(x)g(x)<0的解集是(  )

  A.(-3,0)(3,+∞)  B.(-3,0)(0,3)

  C.(-∞,-3)(3,+∞) D.(-∞,-3)(0,3)

  答案:D 解题思路:因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以h(x)=f(x)g(x)为奇函数,当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,所以h(x)在(-∞,0)为单调增函数,h(-3)=-h(3)=0,所以当x<0时,h(x)<0=h(-3),解得x<-3,当x<0时,h(x)>0,解得-30时h(x)<0的x的取值范围为(0,3),故选D.

  2.若f(x)=x2-2x-4ln x,不等式f′(x)>0的解集记为p,关于x的不等式x2+(a-1)x-a>0的解集记为q,且p是q的充分不必要条件,则实数a的取值范围是(  )

  A.(-2,-1] B.[-2,-1]

  C. D.[-2,+∞)

  答案:D 解题思路:对于命题p: f(x)=x2-2x-4ln x, f′(x)=2x-2-=,

  由f′(x)>0,得 x>2.由p是q的充分不必要条件知,命题p的解集(2,+∞)是命题q不等式解集的子集,对于命题q:x2+(a-1)x-a>0(x+a)(x-1)>0,当a≥-1时,解集为(-∞,-a)(1,+∞),显然符合题意;当a<-1时,解集为(-∞,1)(-a,+∞),则由题意得-2≤a<-1.综上,实数a的取值范围是[-2,+∞),故选D.

  3.已知定义在R上的函数f(x),g(x)满足=ax,且f′(x)g(x)

  A.7    B.6    C.5    D.4

  答案:B 解题思路:由f′(x)g(x)

  4.(河南适应测试)已知函数f(x)是定义在R上的奇函数,且当x(-∞,0]时,f(x)=e-x-ex2+a,则函数f(x)在x=1处的切线方程为(  )

  A.x+y=0 B.ex-y+1-e=0

  C.ex+y-1-e=0 D.x-y=0

  答案:B 命题立意:本题考查了函数的奇偶性及函数的导数的应用,难度中等.

  解题思路: 函数f(x)是R上的奇函数,

  f(x)=-f(-x),且f(0)=1+a=0,得a=-1,设x>0,则-x<0,则f(x)=-f(-x)=-(ex-ex2-1)=-ex+ex2+1,且f(1)=1,求导可得f′(x)=-ex+2ex,则f′(1)=e,

  f(x)在x=1处的切线方程y-1=e(x-1),即得ex-y+1-e=0,故应选B.

  易错点拨:要注意函数中的隐含条件的挖掘,特别是一些变量的值及函数图象上的特殊点,避免出现遗漏性错误.

  5.设二次函数f(x)=ax2-4bx+c,对x∈R,恒有f(x)≥0,其导数满足f′(0)<0,则的最大值为(  )

  A. B. C.0 D.1

  答案:C 解题思路:本题考查基本不等式的应用.因为f(x)≥0恒成立,所以a>0且Δ=16b2-4ac≤0.又因为f′(x)=2ax-4b,而f′(0)<0,所以b>0,则==2-,又因4a+c≥2≥8b,所以≥2,故≤2-2=0,当且仅当4a=c,ac=4b2,即当a=b,c=4b时,取到最大值,其值为0.

  技巧点拨:在运用均值不等式解决问题时,一定要注意“一正二定三等”,特别是要注意等号成立的条件是否满足.

  6.已知函数f′(x),g′(x)分别是二次函数f(x)和三次函数g(x)的导函数,它们在同一坐标系下的图象如图所示,设函数h(x)=f(x)-g(x),则(  )

  A.h(1)

  B.h(1)

  C.h(0)

  D.h(0)

  答案:D 解题思路:本题考查函数及导函数的图象.取特殊值,令f(x)=x2,g(x)=x3,则h(0)

  二、填空题

  7.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.根据这一发现,则函数f(x)=x3-x2+3x-的对称中心为________.

  答案: 解题思路:由f(x)=x3-x2+3x-,得f′(x)=x2-x+3,f″(x)=2x-1,由f″(x)=0,解得x=,且f=1,所以此函数的对称中心为.

  8.设函数f(x)=(x+1)ln(x+1).若对所有的x≥0都有f(x)≥ax成立,则实数a的取值范围为________.

  答案:(-∞,1] 解题思路:令g(x)=(1+x)ln(1+x)-ax,对函数g(x)求导数g′(x)=ln(1+x)+1-a,令g′(x)=0,解得x=ea-1-1.

  当a≤1时,对所有x≥0,g′(x)≥0,所以g(x)在[0,+∞)上是增函数.

  又g(0)=0,所以对x≥0,有g(x)≥0,

  即当a≤1时,对于所有x≥0,都有f(x)≥ax.

  当a>1时,对于0

  又g(0)=0,所以对0

  所以,当a>1时,不是对所有的x≥0都有f(x)≥ax成立.

  综上,a的取值范围为(-∞,1].

  相关推荐:

  2016年高考政治复习指导:四招攻克时事政治关

  2016年高考政治复习必看:两会十大热点前瞻

  名师指导:如何增强2016年高考作文的语言形式美

  2016高考作文指导:怎样在考场中构思出好作文

  2016年高考化学提分必备:史上最全的化学方程式

文章搜索
万题库小程序
万题库小程序
·章节视频 ·章节练习
·免费真题 ·模考试题
微信扫码,立即获取!
扫码免费使用
国家 北京 天津 上海 重庆
河北 山西 辽宁 吉林 江苏
浙江 安徽 福建 江西 山东
河南 湖北 湖南 广东 广西
海南 四川 贵州 云南 西藏
陕西 甘肃 宁夏 青海 新疆
黑龙江 内蒙古 更多
高考栏目导航
版权声明:如果高考网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本高考网内容,请注明出处。
免费复习资料
最新高考资讯
文章责编:songxiaoxuan