自主命题
统一命题
单独报考
您现在的位置: 考试吧 > 2021高考 > 高考数学 > 高考数学模拟试题 > 正文

2016高考数学提分专练及答案:数列交汇的综合问题

来源:考试吧 2016-1-11 16:20:41 要考试,上考试吧! 万题库
2016高考数学提分专练及答案:数列交汇的综合问题,更多2016高考资讯、2016高考报名时间、2016高考报考条件、2016高考经验等信息,请及时关注考试吧高考网或关注“566高考”微信获取相关信息!

  二、填空题

  7.在等差数列{an}中,a2=5,a1+a4=12,则an=________;设bn=(nN*),则数列{bn}的前n项和Sn=________.

  答案:2n+1  命题立意:本题考查等差数列的通项公式与裂项相消法,难度中等.

  解题思路:设等差数列{an}的公差为d,则有a2+a3=5+a3=12,a3=7,d=a3-a2=2,an=a2+(n-2)d=2n+1,bn==,因此数列{bn}的前n项和Sn=×

  ==.

  8.设Sn为数列{an}的前n项和,若(nN*)是非零常数,则称该数列为“和等比数列”,若数列{cn}是首项为2,公差为d(d≠0)的等差数列,且数列{cn}是“和等比数列”,则d=________.

  答案:4 解题思路:由题意可知,数列{cn}的前n项和为Sn=,前2n项和为S2n=,所以==2+=2+,所以当d=4时,=4.

  9.已知定义在R上的函数f(x)是奇函数且满足f=f(x),f(-2)=-3,数列{an}满足a1=-1,且Sn=2an+n(其中Sn为{an}的前n项和),则f(a5)+f(a6)=______.

  答案:3 解题思路:因为Sn=2an+n,则Sn-1=2an-1+n-1,

  两式相减得an=2an-1-1,通过拼凑整理得an-1=2(an-1-1),所以{an-1}是等比数列,则an-1=-2n,因此an=1-2n,所以a5=-31,a6=-63.

  由f=f(x)且函数f(x)是奇函数,用-x代替x得到f=f(-x)=-f(x),用+x代替x得到f(3+x)=f(x),所以函数f(x)为周期为3,

  则f(a5)+f(a6)=f(-31)+f(-63)=f(-1)+f(0)=f(2)+0=-f(-2)=3.

  10.已知ABC的内角A,B,C的对边分别为a,b,c,且a,b,c成递减的等差数列.若A=2C,则的值为________.

  答案: 命题立意:本题主要考查等差数列、正弦定理、余弦定理与三角函数基本公式.解题思路是依据题意得出a,b,c之间的关系,再结合正弦定理、余弦定理及A=2C,从而得出a,c之间的关系.

  解题思路:依题意知b=,===2cos C=2×,即====,所以a2=c,即(2a-3c)(a-c)=0,又由a>c,因此有2a=3c,故=.

  三、解答题

  11.已知函数f(x)=x2+bx为偶函数,数列{an}满足an+1=2f(an-1)+1,且a1=3,an>1.

  (1)设bn=log2(an-1),求证:数列{bn+1}为等比数列;

  (2)设cn=nbn,求数列{cn}的前n项和Sn.

  命题立意:本题主要考查函数的性质,数列的通项公式和前n项和公式等知识.解题时,首先根据二次函数的奇偶性求出b值,确定数列通项的递推关系式,然后由等比数列的定义证明数列{bn+1}为等比数列,这样就求出数列{bn}的通项公式,进一步就会求出数列{cn}的通项公式,从而确定数列{cn}的前n项和Sn的计算方法.

  解析:(1)证明: 函数f(x)=x2+bx为偶函数,

  b=0, f(x)=x2,

  an+1=2f(an-1)+1=2(an-1)2+1,

  an+1-1=2(an-1)2.

  又a1=3,an>1,bn=log2(an-1),

  b1=log2(a1-1)=1,

  ====2,

  数列{bn+1}是首项为2,公比为2的等比数列.

  (2)由(1),得bn+1=2n, bn=2n-1,

  cn=nbn=n2n-n.

  设An=1×2+2×22+3×23+…+n×2n,

  则2An=1×22+2×23+3×24+…+n×2n+1,

  -An=2+22+23+…+2n-n×2n+1

  =-n×2n+1=2n+1-n×2n+1-2,

  An=(n-1)2n+1+2.

  设Bn=1+2+3+4+…+n,则Bn=,

  Sn=An-Bn=(n-1)2n+1+2-.

  12.函数f(x)对任意xR都有f(x)+f(1-x)=1.

  (1)求f的值;

  (2)数列{an}满足:an=f(0)+f+f+…+f+f(1),求an;

  (3)令bn=,Tn=b+b+…+b,Sn=8-,试比较Tn与Sn的大小.

  解析:(1)令x=,

  则有f+f=f+f=1.

  f=.

  (2)令x=,得f+f=1,

  即f+f=1.

  an=f(0)+f+f+…+f+f(1),

  an=f(1)+f+f+…+f+f(0).

  两式相加,得

  2an=[f(0)+f(1)]++…+[f(1)+f(0)]=n+1,

  an=,nN*.

  (3)bn==,

  当n=1时,Tn=Sn;

  当n≥2时,

  Tn=b+b+…+b

  =4

  <4

  =4

  =4=8-=Sn.

  综上,Tn≤Sn.

关注"566高考"官方微信,第一时间获取2016高考备考资料!

  相关推荐:

  2016年高考数学:七大复习要点

  2016高考数学:区分三大题型 不同技巧应考

  2016年高考数学备考:专项练习及答案汇总

文章搜索
万题库小程序
万题库小程序
·章节视频 ·章节练习
·免费真题 ·模考试题
微信扫码,立即获取!
扫码免费使用
国家 北京 天津 上海 重庆
河北 山西 辽宁 吉林 江苏
浙江 安徽 福建 江西 山东
河南 湖北 湖南 广东 广西
海南 四川 贵州 云南 西藏
陕西 甘肃 宁夏 青海 新疆
黑龙江 内蒙古 更多
高考栏目导航
版权声明:如果高考网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本高考网内容,请注明出处。
免费复习资料
最新高考资讯
文章责编:songxiaoxuan