一、选择题
1.不等式ax2+bx+2>0的解集是,则a+b的值是( )
A.10 B.-10
C.14 D.-14
答案:D 命题立意:本题考查一元二次不等式与二次方程的关系,难度中等.
解题思路:由题意知ax2+bx+2=0的两个根为-,, -+=-,-×=, a=-12,b=-2, a+b=-14.
2.函数y=ax+3-2(a>0,a≠1)的图象恒过定点A,若点A在直线+=-1上,且m>0,n>0,则3m+n的最小值为( )
A.13 B.16
C.11+6 D.28
答案:B 解题思路:函数y=ax+3-2的图象恒过A(-3,-1),由点A在直线+=-1上可得,+=-1,即+=1,故3m+n=(3m+n)×=10+3.因为m>0,n>0,所以+≥2=2,故3m+n=10+3≥10+3×2=16,故选B.
3.已知变量x,y满足约束条件则z=的取值范围为( )
A.[1,2] B.
C. D.
答案:B 命题立意:本题是线性规划问题,首先准确作出可行域,然后明确目标函数的几何意义是可行域内的点与点(-1,-1)连线的斜率,最后通过计算求出z的取值范围.
解题思路:由已知约束条件,作出可行域如图中阴影部分所示,其中A(1,1),B(1,2),目标函数z=的几何意义为可行域内的点与点P(-1,-1)连线的斜率,kPA=1,kPB=,故选B.
4.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为( )
A. B.
C. D.4
答案:B 解题思路:画出不等式组表示的可行域,如图所示.
当直线ax+by=z过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,取得最大值12,即4a+6b=12,即2a+3b=6.
而+==+≥+2=,故选B.
5.若实数x,y满足则z=3x+2y的最小值为( )
A.0 B.1 C. D.9
答案:B 解题思路:可行域是由点,(0,1),(0,0)为边界的三角形区域,z=3x+2y的最小值在m=x+2y取得最小值时取得,m=x+2y在经过(0,0)时取得最小值,即z=3x+2y最小值为30=1,故选B.
6.已知函数f(x)=则不等式f(a2-4)>f(3a)的解集为( )
A.(2,6) B.(-1,4)
C.(1,4) D.(-3,5)
答案:B 命题立意:本题以分段函数为载体,考查了函数的单调性以及不等式等知识,考查了数形结合的思想.解题时首先作出函数f(x)的图象,根据图象得到函数的单调性,进而得到不等式的解集.
解题思路:作出函数f(x)的图象,如图所示,则函数f(x)在R上是单调递减的.由f(a2-4)>f(3a),可得a2-4<3a,整理得a2-3a-4<0,即(a+1)(a-4)<0,解得-1
7.(呼和浩特第一次统考)已知正项等比数列{an}满足S8=17S4,若存在两项am,an使得=4a1,则+的最小值为( )
A. B.
C. D.
答案:C 命题立意:本题考查等比数列的通项公式及前n项和公式与均值不等式的综合应用,难度中等.
解题思路:由已知S8=17S4=1+q4=17,又q>0,解得q=2.因为各项均为正项,因此==a1=4a1,整理得2m+n-2=16m+n=6.由均值不等式得+==≥=,当且仅当m=n=3时,取得最小值.
8.定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如,(1,2)[3,5)的长度d=(2-1)+(5-3)=3.用[x]表示不超过x的最大整数,记{x}=x-[x],其中xR.设f(x)=[x]·{x},g(x)=x-1,当0≤x≤k时,不等式f(x)
A.6 B.7 C.8 D.9
答案:B 命题立意:本题考查函数与不等式知识以及对已知信息的理解和迁移能力,难度中等.
解题思路:f(x)=[x]·{x}=[x]·(x-[x])=[x]x-[x]2,由f(x)1,不合题意;当x[1,2)时,[x]=1,不等式为0<0,无解,不合题意;当x≥2时,[x]>1,所以不等式([x]-1)x<[x]2-1等价于x<[x]+1,此时恒成立,所以此时不等式的解为2≤x≤k.因为不等式f(x)
9.设变量x,y满足约束条件则目标函数z=2x+y的最小值为( )
A.1 B.2 C.3 D.8
答案:C 解题思路:作出约束条件的可行域,知(1,1)为所求最优解, zmin=2×1+1=3.
10.设曲线x2-y2=0的两条渐近线与抛物线y2=-4x的准线围成的三角形区域(包含边界)为D,P(x,y)为D内的一个动点,则目标函数z=x-2y+5的最大值为( )
A.4 B.5 C.8 D.12
答案:C 解题思路:由x2-y2=0得曲线为y=±x.抛物线的准线为x=1,所以它们围成的三角形区域为三角形BOC.由z=x-2y+5得y=x+(5-z),作直线y=x,平移直线y=x,当直线y=x+(5-z)经过点C时,直线y=x+(5-z)的截距最小,此时z最大.由得x=1,y=-1,即C(1,-1),代入z=x-2y+5得z=8.
相关推荐:
·2020年高考英语抢分题型专练及答案(5) (2020-3-22 15:31:57)
·2020年高考英语抢分题型专练及答案(4) (2020-3-22 15:31:24)
·2020年高考英语抢分题型专练及答案(3) (2020-3-22 15:26:01)
·2020年高考英语抢分题型专练及答案(2) (2020-3-22 15:23:38)
·2020年高考英语抢分题型专练及答案(1) (2020-3-22 15:22:32)
·免费真题 ·模考试题
2022年上海高考作文题目已公布
2022年湖南高考地理答案已公布
2022年湖南高考生物答案已公布
2022年广东高考地理试题答案已公布
2022年湖南高考生物真题已公布
2022年广东高考真题及答案汇总
2022年浙江高考真题及答案汇总
2022年广东高考生物真题及答案已公布(完整版)
2022年浙江高考政治真题及答案已公布(完整版)
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |