自主命题
统一命题
单独报考
您现在的位置: 考试吧 > 2021高考 > 高考数学 > 高考数学模拟试题 > 正文

2016高考数学提分专练及答案:不等式与线性规划

来源:考试吧 2016-3-22 14:39:01 要考试,上考试吧! 万题库
2016高考数学提分专练及答案:不等式与线性规划,更多2016高考资讯、2016高考报名时间、2016高考报考条件、2016高考经验等信息,请及时关注考试吧高考网或关注“566高考”微信获取相关信息!

  >>>>>2016年高考数学提分专项练习及答案汇总

  一、选择题

  1.不等式ax2+bx+2>0的解集是,则a+b的值是(  )

  A.10 B.-10

  C.14 D.-14

  答案:D 命题立意:本题考查一元二次不等式与二次方程的关系,难度中等.

  解题思路:由题意知ax2+bx+2=0的两个根为-,, -+=-,-×=, a=-12,b=-2, a+b=-14.

  2.函数y=ax+3-2(a>0,a≠1)的图象恒过定点A,若点A在直线+=-1上,且m>0,n>0,则3m+n的最小值为(  )

  A.13 B.16

  C.11+6 D.28

  答案:B 解题思路:函数y=ax+3-2的图象恒过A(-3,-1),由点A在直线+=-1上可得,+=-1,即+=1,故3m+n=(3m+n)×=10+3.因为m>0,n>0,所以+≥2=2,故3m+n=10+3≥10+3×2=16,故选B.

  3.已知变量x,y满足约束条件则z=的取值范围为(  )

  A.[1,2] B.

  C. D.

  答案:B 命题立意:本题是线性规划问题,首先准确作出可行域,然后明确目标函数的几何意义是可行域内的点与点(-1,-1)连线的斜率,最后通过计算求出z的取值范围.

  解题思路:由已知约束条件,作出可行域如图中阴影部分所示,其中A(1,1),B(1,2),目标函数z=的几何意义为可行域内的点与点P(-1,-1)连线的斜率,kPA=1,kPB=,故选B.

  4.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为(  )

  A. B.

  C. D.4

  答案:B 解题思路:画出不等式组表示的可行域,如图所示.

  当直线ax+by=z过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,取得最大值12,即4a+6b=12,即2a+3b=6.

  而+==+≥+2=,故选B.

  5.若实数x,y满足则z=3x+2y的最小值为(  )

  A.0 B.1 C. D.9

  答案:B 解题思路:可行域是由点,(0,1),(0,0)为边界的三角形区域,z=3x+2y的最小值在m=x+2y取得最小值时取得,m=x+2y在经过(0,0)时取得最小值,即z=3x+2y最小值为30=1,故选B.

  6.已知函数f(x)=则不等式f(a2-4)>f(3a)的解集为(  )

  A.(2,6) B.(-1,4)

  C.(1,4) D.(-3,5)

  答案:B 命题立意:本题以分段函数为载体,考查了函数的单调性以及不等式等知识,考查了数形结合的思想.解题时首先作出函数f(x)的图象,根据图象得到函数的单调性,进而得到不等式的解集.

  解题思路:作出函数f(x)的图象,如图所示,则函数f(x)在R上是单调递减的.由f(a2-4)>f(3a),可得a2-4<3a,整理得a2-3a-4<0,即(a+1)(a-4)<0,解得-1

  7.(呼和浩特第一次统考)已知正项等比数列{an}满足S8=17S4,若存在两项am,an使得=4a1,则+的最小值为(  )

  A. B.

  C. D.

  答案:C 命题立意:本题考查等比数列的通项公式及前n项和公式与均值不等式的综合应用,难度中等.

  解题思路:由已知S8=17S4=1+q4=17,又q>0,解得q=2.因为各项均为正项,因此==a1=4a1,整理得2m+n-2=16m+n=6.由均值不等式得+==≥=,当且仅当m=n=3时,取得最小值.

  8.定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如,(1,2)[3,5)的长度d=(2-1)+(5-3)=3.用[x]表示不超过x的最大整数,记{x}=x-[x],其中xR.设f(x)=[x]·{x},g(x)=x-1,当0≤x≤k时,不等式f(x)

  A.6 B.7 C.8 D.9

  答案:B 命题立意:本题考查函数与不等式知识以及对已知信息的理解和迁移能力,难度中等.

  解题思路:f(x)=[x]·{x}=[x]·(x-[x])=[x]x-[x]2,由f(x)1,不合题意;当x[1,2)时,[x]=1,不等式为0<0,无解,不合题意;当x≥2时,[x]>1,所以不等式([x]-1)x<[x]2-1等价于x<[x]+1,此时恒成立,所以此时不等式的解为2≤x≤k.因为不等式f(x)

  9.设变量x,y满足约束条件则目标函数z=2x+y的最小值为(  )

  A.1 B.2 C.3 D.8

  答案:C 解题思路:作出约束条件的可行域,知(1,1)为所求最优解, zmin=2×1+1=3.

  10.设曲线x2-y2=0的两条渐近线与抛物线y2=-4x的准线围成的三角形区域(包含边界)为D,P(x,y)为D内的一个动点,则目标函数z=x-2y+5的最大值为(  )

  A.4 B.5 C.8 D.12

  答案:C 解题思路:由x2-y2=0得曲线为y=±x.抛物线的准线为x=1,所以它们围成的三角形区域为三角形BOC.由z=x-2y+5得y=x+(5-z),作直线y=x,平移直线y=x,当直线y=x+(5-z)经过点C时,直线y=x+(5-z)的截距最小,此时z最大.由得x=1,y=-1,即C(1,-1),代入z=x-2y+5得z=8.

  相关推荐:

  2016年高考政治复习指导:四招攻克时事政治关

  2016年高考政治复习必看:两会十大热点前瞻

  名师指导:如何增强2016年高考作文的语言形式美

  2016高考作文指导:怎样在考场中构思出好作文

  2016年高考化学提分必备:史上最全的化学方程式

文章搜索
万题库小程序
万题库小程序
·章节视频 ·章节练习
·免费真题 ·模考试题
微信扫码,立即获取!
扫码免费使用
国家 北京 天津 上海 重庆
河北 山西 辽宁 吉林 江苏
浙江 安徽 福建 江西 山东
河南 湖北 湖南 广东 广西
海南 四川 贵州 云南 西藏
陕西 甘肃 宁夏 青海 新疆
黑龙江 内蒙古 更多
高考栏目导航
版权声明:如果高考网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本高考网内容,请注明出处。
免费复习资料
最新高考资讯
文章责编:songxiaoxuan